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Abstract
This study used a destructive approach to develop species-specific allometric equations for H. barteri 
in Cameroon. A sample of 30 individuals was chopped, measured, and weighed, and six prediction 
models were created for leaves, branches, trunks, roots, and total above-ground biomass. The best 
models were chosen using Akaike's information criterion, residual standard error, root mean square 
error, and adjusted coefficients of determination. The total biomass above ground was ln (B) = 
2.832 + 0.981 * ln (dbh2 × H × WD) * (1.0008); the trunks were ln (B) = 1.101 + 0.106 * ln (dbh × 
WD) * (1.0003); the branches were ln (B) = 0.065 + 0.010 * ln (dbh × WD) * (1.0008); the leaves 
were ln (B) = 0.065 + 0.010 * ln (dbh2 × H) * (1.0008), and the roots were ln (B) = 0.758 + 0.035 * ln 
(dbh) * (1.0009).  The equations offer important information for scaling up biomass estimations and 
evaluating carbon sequestration potential in H. barteri stands in Cameroon.
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Introduction
Haematostaphis barteri Hook. F. is a forest tree species with regional significance found 

in savannas of Guinea and Sudan in tropical Africa [1-3]. Its fruits are marketed fresh in local 
marketplaces and consumed by people in North Cameroon, Togo, and northern Cameroon. H. 
barteri contains protein, vitamins, and trace elements in its fruits and leaves. Its natural range is 
limited to tropical Africa, including Ghana, Togo, Benin, Nigeria, Cameroon, and Chad [4]. Forests 
play a significant role in the global carbon cycle, and REDD+ programs aim to estimate carbon 
stored in forests [5]. Local allometric models are essential for estimating biomass in various land 
uses, such as nitrogen cycle, energy, and environmental impacts. Forests are considered a means of 
mitigating climate change [5].

Wood basic density (WD) is a crucial explanatory element for biomass estimation, calculated 
from wood samples by dividing dry mass by green volume [5-12]. Tree dbh and ht are often used 
as explanatory variables in biomass allometric models [5, 7, 13]. However, the dbh range, unequal 
distribution, and ecological zones limit their applications in Africa [14]. Some sub-Saharan African 
nations rely on pantropic models to estimate local AGB, but these models cannot solve the increasing 
demand for local allometric models [15, 16].

Despite its importance, little information exists about its potential for carbon storage. 
Understanding biomass could help rural populations become more resilient to climate change 
and aid carbon sequestration initiatives like the REDD + Mechanism biomass [17-22]. The study 
aims to create allometric formulas to calculate the aboveground and root biomass of H. barteri in 
Cameroon's Sudano-Sahelian zone.

Materials and Methods
Research site

The research was conducted in Central Africa, namely in the North region of Cameroon. This 
area lies between latitudes 9° 18'N and 8° 10'N and longitudes 13° 23'E and 12° 16'E [23] (Figure 1). 
Between the Adamawa Plateau to the south and the Mandara Mountains (1442 m) to the north, the 
relief is a sizable pedi-plain. There are two distinct seasons in the Sudano-Sahelian climate: a six-
month dry season (November–May) and a six-month rainy season (June–October) [24]. Between 
August and March, the average monthly temperature ranged from 26°C to 40°C. The ferruginous 
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kind of soil is distinguished by its poor cation exchange capacity and 
acidity (pH = 5.5–6) [25]. Around the villages, the vegetation is a clear 
and degraded Sudanian savannah, with shrubby vegetation [26].

Data Collection
The study used a direct method to investigate H. barteri trees, 

selecting individuals based on availability and absence of signs of 
human abuse. Circumferences were measured and three diameter 
classes 5–10 cm, 10–20 cm, and 20–30 cm were chosen, with thirty 
trees in the North Cameroon region marked.

Ten individuals were divided into classes and separated into 
three sections: leaves, branches, and trunks. Roots were excavated to 
determine biomass. Large branches, trunks, and roots were chopped 
into small pieces, bagged, and weighed. Samples were dried in an oven 
set to 70°C for leaves and 105°C for trunk, branches, and root discs. 
The following formula will be used to determine the water content of 
the leaf, branch, and trunk samples:

WC (%) = ((WM-DM) / DM) * 100 [27, 28]

where WM and DM stand for the sample's wet mass (Kg) and 
dry mass (Kg), respectively, and WC is the water content of the 
samples expressed as a percentage. The following formula was used to 
determine the total dry masses of the fractions based on the samples' 
water content: 100 * TWM / (100 + WC) = TDM [27, 28], TDM 
stands for total dry mass. The total wet mass is TWM (Kg). Known as 
biomass, the total dry masses are measured in kilograms (Kg).

Wood samples from trunks and branches were harvested to 
calculate H. barteri's wood density. They were weighed, labeled, and 
stored in a laboratory. To calculate volume, samples were soaked in 
water and calibrated on a balance following Archimedes' principle 
[29]. Samples were dried in an oven at 105°C for 72 hours, then 
weighed every six hours until a consistent weight was achieved, with 
data stored after achieving complete evaporation of water [22, 30].  
Using the dry weight to volume ratio and the calculation from [29] 
below, the density of the wood was determined: WDi = Mi / Vi, where 
WDi is the wood density I, Mi is the species I's dry weight, and Vi is its 
water content. We determined the root:shoot ratio (RS) for each tree 
by simply dividing the values of leaves, branches, trunk, and AGB by 
the matching BGB value after estimating AGB and BGB as previously 
said.

Data Analysis
The leaf, trunk, branch, root biomass, and total AGB of H. 

barteri were found to be allometrically related to the tree's physical 
characteristics, including height (H), wood density (WD), and 
diameter at breast height (dbh) [27]. The power model and the 
polynomial model are the two types of models commonly used in the 
literature to forecast these biomasses [7]. Since the polynomial model 
frequently displays aberrant behavior outside of its region of validity, 
the power model was employed in this investigation [27]. 

B = a * Db is the mathematical formula frequently used to modify 
biomass [27, 31], where B is the biomass, D is the diameter, and a, b 
are the regression coefficients. The formula is frequently altered using 
the logarithmic transformation using the relation ln (B) = a + b * In 
(D) [21, 28, 31] in order to account for the heteroskedasticity of the 
data [21, 27]. The following six models were used to fit the biomasses 
in this investigation [5, 7, 31]:

ln (B) = a + b × ln (dbh)		  		  (1)

ln (B) = a + b × ln (dbh×ρ) 			   (2)

ln (B) = a + b × ln (dbh2×H)		   	 (3)

ln (B) = a + b × ln (dbh2×H×ρ)			   (4)

ln (B) = a + b × ln (dbh) + c × ln (H)		  (5)

ln (B) = a + b × ln (dbh) + c × ln (H) + d × ln (ρ) (6)

In this case, B stands for biomass (kg), Dbh for tree diameter, H 
for total height (m), ρ or WD for wood density, and a, b, c, and d for 
regression coefficients.

A correction is consequently required, which entails multiplying 
the estimated Biomass by a correction factor (CF), which is computed 
as follows: The logarithmic processing of the data typically results in a 
bias in the calculation of Biomass [31]. [21, 27] CF = exp (RSE²/2); the 
CF is always bigger than 1 [31]. The models' accuracy and robustness 
in estimating above-ground biomass were evaluated using four criteria 
[31]. They are listed in priority order: i) Adjusted R2, or adjusted 
coefficient of determination, where SRS stands for sum of residual 
squares and STS for sum of total squares. ii) The Akaike Information 
Criterion, or AIC, was calculated using the formula below: AIC = - 
2ln (L) + 2p, where p is the total number of model parameters and 
L is the "Likelihood," or probability, at which the predicted model is 
accurate to the unknown true. iii) Residual standard error, or RSE, 
is calculated as follows: RSE = ln (AGB obs) - ln (AGB pred), where 
AGB obs is the measured above-ground biomass, Pred AGB is the 
predicted above-ground biomass. iv) Root mean squared error, or 
RMSE:

in which: n: the total number of observations that the model uses;

AGB obs: Above-ground biomass measurement;

Predicted above-ground biomass, or Pred AGB. 

K: the total number of model parameters.

A number of statistical characteristics were taken into 
consideration while choosing the optimum allometrics created 
for predicting the biomass of the various H. barteri components. 
Therefore, the better the model, the lower the mean square error 
(RMSE), residual standard error (RSE), Akaike information criterion 
(AIC), and the strong adjusted R2 [31]. R i386 3.1.2 and Excel 2020 
were used to perform the statistical analyses.

Results
Height, Diameter, Wood Density, and Leaves, Branches, 
Trunk, Roots, Total Aboveground Biomass, and 
Measurable Destructive Biomass Parameters Pearson's 
Correlation

Table 1 shows the distribution of biomasses and dendrometric 
characteristics in a forest. The dbh ranged from 5.09 to 29.93 cm, 
with heights from 3.5 to 9.5 meters. The wood density ranged from 
0.390 to 0.670 g/cm3. The biomass's AGB ranged from 164.02-298 
kg, with trunks acquiring more biomass than other compartments. 
The biomass of leaves, trunks, branches, roots, total aboveground 
biomass, and H showed a positive association with the dbh, while the 
dbh and wood density showed a positive but non-significant link.

Regression Relationship between Diameter-Height
Individual height and diameter have been found to correlate 
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significantly (r2 = 0.785; P <0.001) (Figure 2).

Allometric Equation Development and Modeling
The regression coefficients of the examined models are statistically 

significant, with coefficients varying between compartments. The 
adjusted coefficients of determination range from 94.58 to 99.87 
percent, indicating positive and significant connections between 
biomass and various characteristics (Table 2).

Choosing the Best Models
Leaf biomass was best predicted using dbh2 × H, with adjusted R2 

(98.98%) and RSE (0.201 kg). Branch and trunk biomass had higher 
adjusted R2 values and lower RSE.

The best prediction for total above-ground biomass is achieved 

using dbh2 × H × WD, with an adjusted R2 of 99.87%, RSE of 0.31 kg, 
AIC of 10.01, and RMSE of 0.143 kg. Table 3 displays these optimal 
equations, and their modifications are displayed in Figures 3 (a, b, c, 
d, e).

The proportions of total above-ground biomass, biomass 
from other above-ground compartments, and biomass 
from roots

The dug individuals' root biomass varied between 40.90 and 95.02 
kg. The average root biomass to various tree parts ratios were then 
calculated (Table 4). Root biomass to other tree components has an 
average ratio between 0.29 and 1.66. Nonetheless, the overall biomass 
is the most significant biomass in the calculations.

Discussion
Accurate biomass models are crucial for estimating forest carbon 

stocks and providing verifiable information to decision-makers [27]. 
The diameter-height relationship indicates species' ecological growth 
conditions [28]. The height of a tree is predicted by its diameter, 
indicating variations among species due to their specific structures, 
competition, or environmental conditions affecting growth rate [32].

The study calculates an average base wood density of 0.53 g/cm3 
for H. barteri, similar to other species like Anacardium occidentale 
[33]  and Mangifera indica [34]. However, this density is lower than 
previous estimates for Tectona grandis plantations [35]. In addition, 
[36] reported an average value of 0.54 g/cm3 from 123 species in the 
tropical forest of Panama and [37] reported an average value of 0.60 
g/cm3 for 470 species from tropical America. The differences between 
the study and database values suggest potential errors in biomass 
estimates. Field measurements can improve allometric equation 
precision.

The study found that trunk biomass contributed the most to 
aboveground biomass, accounting for 52.35%, while leaf biomass 
made up the smallest part, aligning with previous literature [38, 39]. 
The reason for this is that the leaves are pushed onto the younger 
branches rather than the older ones [40]. The study involved 30 
individuals, a variable sample size in allometric model development, 
considering resources and time allocated to the study [27]. Some 
allometric biomass equations have been constructed from a limited 
number of individuals, 26 trees [35]; 20 trees [41]; 38 trees [42]; 17 
trees [27]; 20 trees [28]. Others incorporate very few large diameter 
trees, 1 to 79 cm in diameter [17]. Dendrometry range is a condition 
for model use, variable depending on objectives, species, populations, 

Figure 1: Study area's geographic location within the North Cameroon 
Region.

Figure 2: Diameter-height regression connection.

Person correlation

Item dbh H WD or ρ Mean (CV) Range

Leaves (kg) 0.875** 0.654** 0.265ns 40.90 (39.95) 20.93-60.88

Branches (kg) 0.954** 0.503** 0.554** 85.52 (41.68) 64.68-106.36

Trunk (kg) 0.812** 0.696** 0.587** 104.58 (52.35) 78.41-130.76

TAGB (kg) 0.987** 0.785** 0.502** 2 31(133.98) 164.02-298

Roots (kg) 0.765** 0.453ns 0.328ns 67.96 (54.12) 40.90-95.02

dbh (cm) 1 0.785** 0.213ns 17.51 (24.84) 5.09-29.93

H (m) 0.785** 1 0.276ns 6.50 (10.48) 3.50-9.50

WD  (g/cm3) 0.213ns 0.276ns 1 0.530 (28) 0.390-0.670

Table 1: Height, wood density, leaves, branches, trunks, roots, total aboveground biomass, belowground biomass, and quantifiable damaging biomass factors are 
correlated.

CV: Coefficient of variation, **P < 0.01, ns: P > 0.05, Diameter (D), Height (H), wood density (WD), Aboveground biomass (AGB)
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and sampling plans [43]. Logarithmic transformation is used to 
reduce residual heterogeneity and approach linearity [44].

Allometric equations were developed using breast height, height, 
and wood density, considering Akaike information criterion, residual 
standard error, and root mean square error. Five models were selected, 
with Eq.4 being the best for determining total aboveground biomass 
and Eq. 3 for leaf biomass estimation [31]. This result corroborates 
those of [27] and [28] who showed respectively that the best model 

for the prediction of the foliar biomass of 17 feet of Daniella oliveri 
and 20 feet of Faidherbia albida in Cameroon is the one taking into 
account the diameter squared multiplied by the height (dbh2 × H). The 
optimal model for estimating branch and trunk biomass is model Eq. 
2, which has the lowest AIC, RMSE, and RES values, and the highest 
adjusted coefficient of determination for root biomass, considering 
only diameter. The dbh alone is a good predictor for estimating the 
roots biomass. This result is similar to that of [27] who worked on 17 
individuals of Daniellia oliveri in Cameroon.

Table 2: Dry biomass prediction allometric equation models based on various H. barteri components.

Allometric models

Compartment
Regressions of coefficient’s Performance of model

a (sd)  b (sd)  c (sd)  d (sd)  Adj.R² (%) RSE AIC RMSE P CF

Leaf biomass

ln (B) = a +b×ln (dbh) 0.845(0.05) 0.203(0.03) 95.96 0.251 15.94 0.128 <0.001 1.0004

ln (B) = a +b×ln (dbh×WD) 1.105(0.14) 0.103(0.02) 95.88 0.228 13.27 0.124 <0.001 1.0001

ln(B) = a + b ×ln (dbh2×H) 2.005(0.16) 1.035(0.01) 98.98 0.201 10.94 0.101 <0.001 1.0002

ln(B) = a + b ×ln (dbh2×H×WD) 0.205(0.02) 0.630(0.04) 95.97 0.244 16.28 0.124 <0.001 1.0006

ln(B) = a + b× ln (dbh) + c×ln (H) 0.518(0.08) 0.205 (0.03) 0.020(0.02) 95.98 0.254 18.94 0.141 <0.001 1.0003

ln(B) = a + b× ln (dbh) + c×ln (H) + d×ln (WD) 0.408(0.03) 0.105 (0.02) 0.010(0.01) 0.005(0.00) 94.58 0.258 14.26 0.154 <0.001 1.0005

Branch biomass                                                                                                                                                                                                                   0,181

ln (B) = a +b×ln (dbh) 0.404(0.02) 0.006(0.00) 97.98 0.204 14.14 0.120 <0.001 1.0006

ln (B) = a +b×ln (dbh×WD) 0.065(0.01) 0.010(0.00) 99.65 0.102 12.94 0.100 <0.001 1.0008

ln(B) = a + b ×ln (dbh2×H) 0.657(0.03) 0.202 (0.01) 98.08 0.118 15.28 0.114 <0.001 1.0001

ln(B) = a + b ×ln (dbh2×H×WD) 0.708(0.04) 0.307(0.02) 96.07 0.218 15.94 0.134 <0.001 1.0005

ln(B) = a + b× ln (dbh) + c×ln (H) 0.902(0.05) 0.408(0.03) 0.005(0.00) 95.16 0.144 19.20 0.152 <0.001 1.0002

ln(B) = a + b× ln (dbh) + c×ln (H) + d×ln (WD) 0.705(0.04) 0.205(0.01) 0.201(0.01) 0.102(0.00) 95.73 0.285 17.94 0.178 <0.001 1.0003

Trunk biomass

ln (B) = a +b×ln (dbh) 0.706(0.02) 0.326(0.04) 97.56 0.258 15.65 0.184 <0.001 1.0002

ln (B) = a +b×ln (dbh×WD) 1.101(0.04) 0.106(0.01) 97.88 0.212 11.01 0.112 <0.001 1.0003

ln(B) = a + b ×ln (dbh2×H) 1.306(0.05) 0.406(0.02) 97.58 0.268 13.29 0.128 <0.001 1.0006

ln(B) = a + b ×ln (dbh2×H×WD) 1.017(0.01) 0.506(0.03) 97.36 0.344 16.19 0.134 <0.001 1.0005

ln(B) = a + b× ln (dbh) + c×ln (H) 2.013(0.07) 0.702(0.05) 0.068(0.01) 97.52 0.318 15.05 0.120 <0.001 1.0008

ln(B) = a + b× ln (dbh) + c×ln (H) + d×ln (WD) 3.085(0.09) 0.004(0.00) 0.002(0.00) 0.001(0.00) 97.63 0.254 13.53 0.194 <0.001 1.0004

Total aboveground biomass

ln (B) = a +b×ln (dbh) 1.876(0.05) 0.406(0.02) 98.98 0.312 17.59 0.189 <0.001 1.0007

ln (B) = a +b×ln (dbh×WD) 1.986(0.06) 0.657(0.03) 98.75 0.328 13.59 0.152 <0.001 1.0005

ln(B) = a + b ×ln (dbh2×H) 1.806(0.04) 1.030(0.05) 98.74 0.344 12.01 0.148 <0.001 1.0001

ln(B) = a + b ×ln (dbh2×H×WD) 2.832(0.08) 0.981(0.04) 99.87 0.310 10.01 0.143 <0.001 1.0008

ln(B) = a + b× ln (dbh) + c×ln (H) 2.302(0.07) 0.068(0.02) 0.062(0.02) 98.94 0.344 16.32 0.180 <0.001 1.0004

ln(B) = a + b× ln (dbh) + c×ln (H) + d×ln (WD) 1.089(0.03) 0.049(0.01) 0.004(0.00) 0.001(0.00) 98.72 0.378 13.05 0.179 <0.001 1.0003

Root biomass

ln (B) = a +b×ln (dbh) 0.758(0.02) 0.035(0.01) 97.96 0.154 14.15 0.119 <0.001 1.0009

ln (B) = a +b×ln (dbh×WD) 2.206(0.08) 0.495(0.03) 95.95 0.180 18.61 0.152 <0.001 1.0001

ln(B) = a + b ×ln (dbh2×H) 1.806(0.05) 0.205 (0.02) 95.78 0.244 17.52 0.148 <0.001 1.0006

ln(B) = a + b ×ln (dbh2×H×WD) 0.721(0.02) 0.208(0.03) 96.78 0.218 18.15 0.184 <0.001 1.0004

ln(B) = a + b× ln (dbh) + c×ln (H) 0.550(0.01) 0.062(0.01) 0.004(0.01) 96.06 0.264 15.61 0.180 <0.001 1.0008

ln(B) = a + b× ln (dbh) + c×ln (H) + d×ln (WD) 1.008(0.04) 0.452(0.03) 0.043(0.00) 0.002(0.00) 97.43 0.268 16.52 0.179 <0.001 1.0003

The coefficients at p <0.001 are significantly different from zero; Standard deviation (sd), Coefficient of regression model (a, b, c and d), Diameter at breast height (dbh), 
Height (H), wood density (WD), Biomass (B), logarithm (ln), adjusted coefficient of determination (adj. R²), correction factor (CF), residual standard error (RSE), Root 
mean squared error (RMSE) and Akaike information criteria (AIC)
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Logarithmic CF is a statistical tool for eliminating biases, but 
it's generally small compared to biomass estimate variation, making 
it omitted [27, 32]. The study found low CF values for all biomass 
equations, indicating minimal errors when fitting logarithmic 
transformations to biomass data.

The ratio established in our study is in line with other results 
found in the literature such as those of [27]. We did not find results 
for H. barteri in particular, but for woody plants in general, [7] 
determined a ratio of 0.28 which is close to the value found in our 
study. The small difference observed could be due, on the one hand, 
to the architectural forms [27] between the species used in this study 
and those studied by [27] and on the other hand, to the environmental 
conditions which are different in the two studies.

Conclusion
This study developed allometric relationships for estimating 

biomass for socio-economically important species like H. barteri in 
Central Africa's Sudano-Sahelian savannah zone of Cameroon. The 

Compartment biomass 
(kg) Allometric models R² (%) RSE RMSE AIC

Leaves ln(B)= 2.005+ 1.035*ln(dbh2×H)*( 1.0002) 98.98 0.201 0.101 10.94

Branch ln(B)= 0.065+ 0.010*ln(dbh×WD)*(1.0008) 99.65 0.102 0.100 12.94

Trunk ln(B)= 1.101+ 0.106*ln(dbh×WD)*(1.0003) 97.88 0.212 0.112 11.01

AGB ln(B)= 2.832+ 0.981*ln(dbh2×H×WD)*(1.0008) 99.87 0.310 0.143 10.01

Roots ln(B)= 0.758 + 0.035*ln(dbh)*(1.0009) 97.96 0.154 0.119 14.15

Table 3: Top allometric model selections by compartment.

Diameter at breast height (dbh), Height (H), wood density (WD), Biomass (B), logarithm (ln), adjusted coefficient of determination (adj. R²), residual standard error 
(RSE), Root mean squared error (RMSE) and Akaike information criteria (AIC)

 

 

 

 

 

 

 

 

 

(a) 
(b) (c) 

(d) (e) 

Figure 3: Regression of the best models chosen. (a) ln (leaves biomass) and ln(dbh2×H), (b) ln (branches biomass) and ln (dbh× WD), (c) ln (trunk biomass) and 
ln (dbh×WD), (d) ln (roots biomass) and ln (dbh), (e) ln (AGB) and ln (dbh2×H ×WD).

Ratios
Roots biomass 

/Leaves 
biomass

Roots biomass 
/Branches 
biomass

Roots 
biomass/

Trunk 
biomass

Roots 
biomass/

AGB

Mean (sd) 1.66 (0.83) 0.79 (0.32) 0.64 (0.21) 0.29 (0.12)

Table 4: Average ratios by compartment.

Standard deviation (sd), Aboveground biomass (AGB)

study used data from thirty trees to build allometric mathematical 
models based on diameter, height, and wood density. The models 
showed varied performance, with the best model for predicting total 
above-ground biomass being 2.832+ 0.981 * ln (dbh2 × H × WD) 
* (1.0008) and the roots were ln (B) = 0.758 + 0.035 * ln (dbh) * 
(1.0009).  The models can also serve as benchmarks for formulating 
conservation strategies. However, new allometric models should be 
used cautiously when estimating biomass of trees outside their range 
of data and site conditions.
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