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Abstract
Our DFT calculation provided the first theoretical investigation on TfOH-mediated cascade 
cyclization from ethyl (E)-2-(2,3-diphenyl-1H-inden-1-ylidene)acetate. The triple bond was 
activated via protonation forming carbocation intermediate followed by rate-limiting 6-endo-dig 
cyclization resulting in six-membered ring. The naphthalene ester was generated via aromatization 
and concomitant recover of TfOH. The ester group is activated under acidic condition, from which 
two paths are competitive not only from similar barriers but relative energy of counterparts. One 
is intramolecular acylation from the first aromatic ring followed by dealcoholation producing 
major benzofluorenone product. The alternative from counterpart is via retro-Friedel−Crafts C−C 
cleavage and subsequent intramolecular acylation by a third aryl ring furnishing another benzo[de]
anthracen-7-one product.
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Introduction
As promising motifs in organic synthesis, enyne moieties can undergo cyclization to form 

polycyclic skeleton through acid-facilitated selective π activation. For instance, Aguilar researched 
1,3-Dien-5-Ynes as versatile building blocks for carbo- and heterocycles [1]. Pradhan explored 
intermolecular allene−alkyne coupling [2]. Trost reported transition metal-catalyzed couplings 
of alkynes to 1,3-enynes [3]. Goel discovered a rapid access to fused polycyclic products via acid-
triggered cascade cyclization of enynes [4]. In addition, fluorinated fluorenone was obtained from 
1,6-Enynes mediated by Cu(0)/selectfluor system involving C-C single bond cleavage [5]. The 
fulvenes were synthesized from C1−C5 cycloaromatization in triplet state antiaromaticity relief and 
self-terminating photorelease of formaldehyde [6]. There is also Brønsted/Lewis Acid-promoted 
site-selective intramolecular cycloisomerizations of aryl-fused 1,6-diyn-3-ones [7]. In this field, 
6-endo-dig cyclizations of 1,5-enyne was used to assemble complex carbocyclic and aromatic 
scaffolds [8,9]. By protonation, this method proceeds through π activation of alkyne leading to 
carbocation and regioselective ring [10].

Major achievements are Alabugin’s synthesis of Bu3SnH-functionalized indenes via 
chemoselective radical-mediated transformation of 1,5-enyne [11, 12] and equivalent alkenes in 
radical cascades to overcome stereoelectronic restriction on ring expansion for preparation of 
expanded polyaromatics [13]. Recently, Liu reported Au(I)-catalyzed 6-endo-dig cyclization of 
aromatic 1,5-enynes Leading to 2-(Naphthalen-2-Yl)Anilines [14]. Although many advances 
have been achieved to explore 1,5-enyne moieties, efficient approach is still desirable to uncover 
TfOH-mediated cascade reaction of conjugated 1,5-enyne to deliver benzo[b]fluorenone scaffold. 
In this context, Benzo-[b]fluorenone and its viable derivatives represent core structure of natural 
bioactive products such as organic light-emitting diodes, materials science, and semiconductors 
[15-17]. Considering the significance of benzo[b]fluorenone motif, Kishore group developed access 
to benzo[a]fluorenes, benzo[b]fluorenes, and indenes triggered by simple Lewis acid [18]. Goel 
discovered two-step to fused-/spiro-polycyclic frameworks via double Heck cascade [19]. Akbar 
demonstrated iodine-mediated synthesis of benzo[a]fluorenone from yne-enone [20].
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Previous methods to obtain benzo[b]fluorenone include Cu(0)/
selectfluor-mediated tandem annulation from 1,6-enynes [21], 
divergent cycloaromatization reaction of 1,5-enynol and 1,5-diynol 
[22], iron(III)-catalyzed chemoselective cycloaromatization reaction 
[23], and cobalt-catalyzed MHP-directed [3 + 2] annulation/ring-
opening/dehydration sequence [24]. A great breakthrough was 
Satyanarayana’s TfOH-mediated cascade cyclization of 1,5-enyne. 
Although desired benzo[b]-fluorenone and benzo[de]anthracen-
7-one were obtained, how the triple bond of substrate alkyne 
was activated by Brønsted acid TfOH? What’s detailed process of 
intramolecular 6-endo-dig cyclization initiated by nucleophilic 
attack of enoate group? How naphthalene ester intermediate is 
formed via aromatization? Why intramolecular acylation followed by 
dealcoholation is competitive with retro-Friedel−Crafts C−C cleavage 
and alternative intramolecular acylation? To solve these questions, it 
is necessary to conduct in-depth theoretical calculations also focus on 
function of TfOH.

Computational Details
Structures were optimized at M06-2X/6-31G(d) level with 

GAUSSIAN09 [26]. Among various DFT methods [27], M06-2X 
functional has smaller deviation between experimental and calculated 
value than B3LYP hybrid functional [28, 29]. With 6-31G(d) basis set, 
it can provide best compromise between time consumption and energy 
accuracy. It was also found to give accurate results for stepwise (2 + 2) 
cycloaddition, enantioselective (4 + 3) and Diels−Alder reaction [30, 
31]. Together with good performance on noncovalent interaction, it 
is suitable for this system [32-34]. To obtain zero-point vibrational 
energy (ZPVE), harmonic frequency calculations were carried out at 
M06-2X/6-31G(d) level gaining thermodynamic corrections at 373 K 
and 1 atm in dichloroethane (DCE). At M06-2X/6-311++G(d,p) level, 
the solvation-corrected free energies were obtained using integral 
equation formalism polarizable continuum model (IEFPCM) [35-39] 
on M06-2X/6-31G(d)-optimized geometries. NBO procedure was 
performed with Natural bond orbital (NBO3.1) obtaining lone pair 
and bond to characterize bonding orbital interaction and electronic 
properties [40-42]. Using Multiwfn_3.7_dev package [43].

Results and Discussion
The mechanism was explored for Brønsted acid-mediated 

cascade cyclization from ethyl (E)-2-(2,3-diphenyl-1H-inden-1-
ylidene)acetate 1 to construct benzo[b]-fluorenone 2 and benzo[de]
anthracen-7-one 3 (Scheme 1). Shown by Scheme 2, TfOH was 
selected as Brønsted acid. Under the influence of TfOH, the triple 
bond of 1 was activated via protonation forming carbocation 
intermediate A, from which the subsequent 6-endo-dig cyclization 
results in six-membered ring intermediate B. The naphthalene ester 
intermediate C is generated via aromatization of B and concomitant 
recover of TfOH. With sufficient acidic condition, the ester group of 
C is activated transforming to intermediate D, from which two paths 
are possible to exist. One aromatic ring undergoes intramolecular 
acylation followed by dealcoholation producing major product 
benzofluorenone 2 (red arrow). Alternatively, the intermediate E can 
be obtained as counterpart of 2 via the same process after removal 
of EtOH and proton (blue arrow). The protonation of E gives 
intermediate F, the retro-Friedel−Crafts C−C cleavage of which forms 
acylium ion intermediate G. A third intramolecular acylation by the 
third aryl ring from G occurs furnishing another product benzo[de]
anthracen-7-one 3 (Scheme1 and 2). 

Triple Bond Activation/6-endo-dig Cyclization/
Aromatization

Initially, intermediate i1 was obtained between 1 and TfOH as 
Brønsted acid as starting point (black dash line of Figure 1), from 
which 1 was protonated by TfOH at alkyne C2 via ts-i1A forming 
carbocation intermediate A to realize the activation of triple bond. 
The activation energy is 14.2 kcal mol−1 exothermic by -1.2 kcal mol−1 
in step 1. The transition vector corresponds to noticable proton H1 
transfer from O1 of TfOH to C2 and resultant elongation of C2-C1 
from triple to double (1.49, 1.2, 1.27 Å) (Figure S1a). Once H1 is 
bonded to C2, the anion TfO is linked to another alkyne C1 in A.

The subsequent nucleophilic attack takes place via ts-AB with 
medium activation energy of 23.9 kcal mol−1 exothermic by -17.8 kcal 
mol−1 generating complex B in step 2. The transition vector reveals 
6-endo-dig cyclization from C1 to C6 and cooperative stretching 
of C1···C2, C5···C6 from double to single (2.11, 1.4, 1.42 Å) (Figure 
S1b). This enables formation of six-membered ring intermediate B. 
However, the concerted path was not located although speculated in 
experiment. A stepwise process is more advantageous for this 6-endo-
dig cyclization under the influence of TfOH.

Then the aromatization of B proceeds via ts-Bi2 with activation 
energy of 16.3 kcal mol−1 exothermic huge by -57.2 kcal mol−1 in 
step 3 leading to i2 binding naphthalene ester intermediate C and 
recovered TfOH. The proton capture by anion TfO mode is shown 

Scheme 1: TfOH-mediated cascade cyclization from ethyl (E)-2-(2,3-
diphenyl-1H-inden-1-ylidene)acetate 1 to construct benzo[b]-fluorenone 2 
and benzo[de]anthracen-7-one 3.

Scheme 2: Proposed reaction mechanism of TfOH-mediated cascade 
cyclization leading to benzo[b]-fluorenone 2 and benzo[de]anthracen-7-one 
3 from 1,5-enyne conjugated system 1. TS is named according to the two 
intermediates it connects.
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by the transition vector including C6···H2···O2 as well as concomitant 
C5···C6 contracted from single to double (1.18, 1.58, 1.44 Å). After 
removal of TfOH and an additional proton bonded to ester group, C 
is activated forming intermediate D as new starting point of following 
process (Table 1) (Figure 1).

Intramolecular Acylation/Dealcoholation
Two possible paths are considered from D. Via ts-Di3, one aromatic 

ring undergoes intramolecular acylation  involving decreased barrier 
of 15.6 kcal mol−1 and endothermic by 11.3 kcal mol−1 in step 4 (red 
dash line of Figure 1). The transition vector comprises nucleophilic 
closing of C8 to C7 forming new five membered ring and stretching 
of C7···O3 as single one (1.79, 1.36 Å) (Figure S1c). The resulting i3 is 
enolized reactive ready for next step.

The dealcoholation takes place in step 5 via ts-i34 with activation 
energy of 11.6 kcal mol−1 yielding intermediate i4 exothermic by -6.4 
kcal mol−1. The transition vector is complex not only illustrating 
continuous elongation of C7···O3, C8···H3 to breaking down but 
linkage of O3···H3 as new EtOH molecule (1.62, 1.3, 1.44 Å) (Figure 
S1d). The major product benzofluorenone 2 is produced once EtOH 
and proton leaves from stable i4. Undoubtedly, the 6-endo-dig 
cyclization of step 2 is determined to be rate-limiting for TfOH-
mediated cascade reaction from conjugated 1,5-enyne. 

Retro-Friedel−Crafts C−C Cleavage/Intramolecular 
Acylation

Alternatively, via similar intramolecular acylation followed by 
dealcoholation from a second aromatic ring an intermediate E is also 
available as counterpart of 2 after removal of EtOH and proton. The 
protonation on C6 of E gives intermediate F as new starting point 
of next two steps (blue dash line of Figure 1). The opening of five 
membered ring occurs from retro-Friedel−Crafts C6-C7 cleavage via 
ts-FG in step 6 with increased activation energy of 19.9 kcal mol−1 
endothermic by 10.8 kcal mol−1 giving acylium ion intermediate 

G. The transition vector is about noticable breaking of C6···C7 and 
cooperative enhanced C7···O4 from double to triple (2.11, 1.15 Å).

At last, a third intramolecular acylation from the third aryl ring 
of G takes place via ts-Gi5 in step 7 with reduced barrier of 10.8 kcal 
mol−1 exothermic by -7.5 kcal mol−1 affording i5. The transition vector 
reveals C10···C7 linking as single one and restoring of C7···O4 from 
triple to double (2.15, 1.15 Å) (Figure S1e). This contributes to closure 
of new six membered ring and carbonyl recovery in i5, from which 
another product benzo[de]anthracen-7-one 3 is furnished without 
proton. Two paths are competitive not only from similar barriers but 
relative energy of counterparts.

Conclusions
The theoretical investigation was provided on Brønsted acid 

TfOH-mediated cascade cyclization from ethyl (E)-2-(2,3-diphenyl-
1H-inden-1-ylidene)acetate. The triple bond was activated via 
protonation forming carbocation intermediate followed by 6-endo-
dig cyclization resulting in six-membered ring. The naphthalene 
ester intermediate was generated via aromatization and concomitant 
recover of TfOH. The ester group is activated under acidic condition, 
from which two paths are competitive not only from similar barriers 
but relative energy of counterparts. One is intramolecular acylation 
from the first aromatic ring followed by dealcoholation producing 
major product benzofluorenone. The alternative from counterpart is 
via retro-Friedel−Crafts C−C cleavage and subsequent intramolecular 
acylation by a third aryl ring furnishing another product benzo[de]
anthracen-7-one. The 6-endo-dig cyclization is determined to be 
rate-limiting for TfOH-mediated cascade reaction from conjugated 
1,5-enyne. 
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