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Abstract
The integration of circular economy principles into industrial processes is essential for achieving 
more sustainable materials. This study aimed to develop functional starch-based films by exploring 
the bioactive properties of vine shoot trimmings (VST) and spent hops (SH). Aqueous extraction 
of VST and SH (dried and fresh) was performed at 3%, 5% and 10% biomass at 50°C. The resulting 
extract was mixed with cationized starch and glycerol to prepare the films formulations, followed 
by drying at 65oC. All the films presented an excellent UPF of 50+ and water repellence properties. 
Low values of antioxidant activity were detected. The obtained results represent an opportunity to 
produce functional textiles, including leisurewear and outdoor sports garments and for footwear 
applications.

Keywords: Bioeconomy; Textiles; Starch-Based Films; Functional Properties; Coloration

Abbreviations
VST: Vine shoot trimmings; SH: Spent hops; UPF: Ultraviolet protection factor; ATR-FTIR: 

Attenuated total reflectance–Fourier transform infrared spectroscopy; dE: Colour difference; WCA: 
Water contact angle; DCA: Diiodomethane contact angle; SPF: Sun protective factor

Introduction
The textile industry faces increasing pressure from consumers and the European Commission 

to adopt more sustainable raw materials and practices [1, 2]. The intensive exploitation of natural 
resources, the contamination of effluents, greenhouse gas emissions, microplastics release, low 
biodegradability of textiles and the low recycling rates are highlighted as the main environmental 
concerns [3, 4, 5]. Emerging strategies to address these challenges are primarily focused on the 
implementation of circular economy models. In addition to promoting reuse, repair, eco-design, 
and recycling practices, the textile industry is also striving to implement the use of renewable raw 
materials [6, 7, 8]. Biopolymers like chitosan, alginates, poly(lactic acid) [9], bacterial cellulose 
[10], starch [11] and polyhydroxyalkanoates (PHA) [12] are already used in textile applications. 
In this paper, starch was selected for its high abundance, thermoplastic properties and possibility 
to develop biodegradable and flexible bio-composites [13, 14]. Starch is one of the most abundant 
biopolymers and can be obtained from renewable sources. It is produced by plants as well as certain 
strains of fungi and algae [15, 16]. Due to its high absorbency, biodegradability, biocompatibility, 
and non-toxicity, starch is widely utilized by various industries, including agriculture [16, 17, 18], 
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cosmetics and personal care products [19, 20, 21], pharmaceutical 
[15, 22, 23], food industry [24, 25, 26], packaging [27, 28, 29] and 
paper industry [30, 31, 32]. 

Starch also has known applications related to the textile field. 
Several studies focused on exploring starch as a flocculant or absorbent 
of dyes/pigments from wastewaters derived from wet-finishing 
processes like dying and printing [33, 34, 35, 36]. Admase et al. (2024) 
used cassava starch as an eco-friendly alternative to petroleum-based 
adhesives to join materials together by hot melt [37]. An antibacterial 
and hydrophobic polyester woven textile was developed using a 
ZnO/Zn(OH)₂/starch/stearic acid composite applied via dip-coating. 
The textile material demonstrated antibacterial activity against 
Staphylococcus aureus and exhibited washing durability for up to 20 
cycles (antibacterial) and 5 cycles (water repellence) [38]. Starch is 
widely used in the textile industry as a thickening agent in printing 
formulations [39, 40, 41]. A patented process involved the use of 
quaternary ammonium-type cationic starch for cotton pre-treatment. 
The inventor claims that this modification, applied before dyeing, 
shortens processing steps, enhances colour fastness, and improves 
anti-wrinkling performance [42]. Cationic starch was used as a 
coating pre-treatment for reactive dyeing. With increasing degrees 
of substitution, both dye absorption and colour intensity improved. 
These results suggest the potential for salt-free reactive dyeing [43]. 
Fernandes et al. (2025) applied cationic starch to develop functional 
textiles exhibiting water repellence with washing durability [44].

The company ANGEL® provides starch-based solutions for 
different industries, including the textile sector. According to the 
company, starch can be applied to warp threads (sizing) before 
weaving to enhance their strength, stiffness, and smoothness, making 
them less susceptible to abrasion and breakage during the weaving 
process. Moreover, starch-treated yarns exhibit reduced airiness and 
a smoother surface, which helps minimize tangling and breakage 
and ultimately enhances production efficiency, fabric quality and 
durability [45]. Besides yarn sizing, BlueCraftAgro®, which specializes 
in starch processing, also mentions the use of starch-based finishings 
to improve a fabric’s shine, resistance to wrinkling, and as a thickener 
for printing formulations [46]. The Laundress New York sells 
starch-based sprays to be applied during ironing to achieve a crisp, 
professional finish. Starch adds body to cotton and linen garments, 
making ironing easier while enhancing resistance to wrinkling and 
soiling [47]. AGRANA provides starch-based products as sizing 
agents, adhesives for textile webs, printing thickeners, including 
digital printing applications. These products are compatible with 
other finishing agents, such as optical bleaching agents, filling agents, 
synthetic resins, and dispersion agents [48]. Starch-based films are 
already intensively explored for sustainable food packaging and 
preservation, offering protection against mold and humidity while 
extending product shelf life [49, 50]. Based on our literature review, 
the use of starch-based films to develop functional textiles has not 
been previously reported.

In our work, cationic-starch and extracts from vine shooting 
trimmings (VST) and spent hops (SH) were used to develop functional 
textiles with UV protection, antioxidant, and water repellency 
properties. Those findings are relevant for outdoor garments such as 
leisurewear or sports applications. 

Materials and Methods
Raw materials

VST and SH were supplied by Quinta de Amares (Amares, 

Portugal) and LETRA (Vila Verde, Portugal), respectively. Both 
wastes were dried at 60°C until a constant weight and <20% moisture 
were obtained. VSTs were ground at 0.25 mm using a Retsch SM 300 
cutting mill (Retsch GmbH, Haan, Germany). The SH was tested in 
the dried and fresh forms. The fresh SH was frozen (-18°C) until use.

The cationic starch was donated by COPAM (Loures, Portugal). 
Glycerol was purchased to Himedia. 

Functional extracts preparation
Aqueous extraction was performed at 3%, 5%, and 10% waste 

biomass for a final volume of 200 mL. The extraction was performed 
in a laboratory machine that simulates exhaustion dyeing, Mathis 
Labomat (BFA/8), at 50oC, 30 rpm for 1 hour. The extracts were 
filtered using a vacuum pump and stored in the fridge (6°C) until use.

Preparation of starch-based films
The formulations consisted of cationized starch (6.25% w/w) 

and glycerol (30 wt.% on the dry starch basis) combined with the 
functional extracts. As a control, water was used instead of the 
functional extracts (referred to as control). The formulation was 
stirred for 10 minutes at room temperature. After, the temperature 
was increased to 80oC to start starch gelatinization. The mixture was 
maintained for 45 minutes at continuous stirring. Subsequently, 
20 mL of the hot suspension was poured into a silicone mold and 
remained at room temperature for 3 hours. Then, the formulations 
were dried in an oven Venticell 111 eco line (MMM) at 65ºC and 10% 
ventilation. 

Starch films characterization
Attenuated total reflectance–Fourier transform infrared 

spectroscopy (ATR-FTIR) analysis was performed to characterize 
the functional groups of the starch-based films (control and with 
functional extracts). The spectra of the samples were recorded in the 
range of 680–4000 cm−1 with a spectral resolution of 2 cm−1.

Colour analysis was conducted in a colorimeter (datacolor, 
Spectro 750), using the standard illuminant CIE D65 and an observer 
angle of 10°C. Colour coordinates from CIEL*a*b* colour space, 
where L* corresponds to lightness (value of 100 and 0 corresponds to 
white and perfect black, respectively); a* corresponds to the transition 
from green (−a*) to red (+a*); and b* corresponds to the transition 
from blue (−b*) to yellow (+b*). Three films (replicates) were 
measured for each concentration, and 3 readings were performed for 
each film.

The measurement of ultraviolet protection factor (UPF) of the 
starch-based films was performed following the standard in Australia/
New Zealand A(S/NZ) 4399. For that, transmittance measurements 
(290 nm and 400 nm) were performed in UV–Vis spectrometer 
(UV−2600i, Shimadzu, Duisburg, Germany). Three films (replicates) 
were measured for each concentration, and 6 readings were performed 
for each film. 

The antioxidant properties were determined by the 2, 2-diphenyl-
1-picrylhydrazyl (DPPH) method. For that analysis, a film with 100 
mg was immersed in 6 mL DPPH solution (0.024 mg/mL in ethanol). 
After 30 min in darkness at room temperature, the absorbance of 
the solution was recorded at 517 nm using a spectrophotometer 
(Shimadzu UV-2600i ISR-2600Plus). Two replicates of each biomass 
concentration were used. The antioxidant activity was determined 
as its capacity to scavenge the DPPH free radicals, according to the 
following equation: 
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						      (1)

Abscontrol corresponds to the absorbance of the control film and 
Abssample to the absorbance of the film with the functional extracts 
incorporated. 

Hydrophobic and oleophobic properties of the starch-based 
films were evaluated by measuring the contact angles of distilled 
water (3 µL) and diiodomethane (1 µL), referred to as WCA and 
DCA, respectively. These measurements were performed using 
a tensiometer (Biolin Scientific Attension Theta Flex). For each 
analysis, contact angle measurements were taken at three different 
locations on each sample.

Statistical analysis
For statistical analysis, Microsoft Excel 365 and GraphPad Prism 

(version 10.4.1) were utilized. Analysis of variance (ANOVA) and 
Tukey’s multiple comparisons (α = 0.05) were used to calculate the 
statistically significant differences in the results between groups, 
and it was considered a confidence level of 95% (p < 0.05) for the 
experimental results.

Results
This section presents the characterization of the developed starch-

based films. 

Colorimetric characterization 
Colour is an essential characteristic for textiles. For that, the 

colour coordinates from CIEL*a*b* colour space were accessed and 
presented in the following figures 1 to 3. The control film was not 
considered since it was white and transparent.

As shown in Figure 1, the L* coordinate values decrease with 
increasing concentrations of waste biomass, indicating that higher 

biomass content results in darker film coloration.VST films presented 
an inferior L* value compared to the SH films at the same time, 
demonstrating darker coloration. Dried SH films presented a lower 
L* coordinate value and, consequently, a darker colour than fresh 
SH. Statistical analysis reveals that the L* values of VST films differ 
significantly (p < 0.05) when the biomass concentration is increased 
up to 5% and 10%. For fresh SH, no significant differences were 
observed with changes in biomass concentration. However, in the 
case of dried SH, using 10% biomass led to a significant difference in 
film lightness compared to 3%.

As shown in Figure 2,  the positive values of the a* coordinate 
for all films indicate a predominant red hue. Both VST and dried SH 
films showed a decrease in a* values with increasing concentration, 
although these differences were not statistically significant (p < 
0.05). VST presents higher a* coordinate values, indicating a reddish 
coloration compared to SH films. When comparing the three waste 
sources, statistically significant differences were observed at 3% 
concentration between VST and fresh SH films.

For all the films, b* coordinate showed only positive values, 
indicating a dominant yellow coloration. A general decrease in 
b* values was observed with increasing biomass concentration. 
These differences were statistically significant (p < 0.05) when the 
concentration of VSH increased up to 3% and of dried SH to 10%. 
Comparing VST and SH, significant differences were observed at the 
5% biomass concentration. At 10%, significant differences between 
VSG and fresh SH. Fresh SH films have a yellowish colour compared 
to the dried SH and VST. 

In Table 1 are presented the colour differences (dE) between 
starch-based films developed with extracts containing 5% and 
10% waste biomass, compared to the film incorporating the lowest 
biomass concentration of 3% (reference).

Analysing the dE values in Table 1, for both VST and SH, 

Figure 1: Variation of L* colour coordinate of the starch-based films developed by the incorporation of VST (vine), fresh SH (hop) and dried SH (dried hop) extracts 
at different biomass concentrations (3%, 5% and 10%).

Figure 2: Variation of a* colour coordinate of the starch-based films developed by the incorporation of VST (vine), fresh SH (hop) and dried SH (dried hop) extracts 
at different biomass concentrations (3%, 5% and 10%).
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increasing the biomass concentration up to 3% led to noticeable 
colour changes, but minimal differences were observed between 
the 5% and 10% concentrations for VST and fresh SH. This is an 
indication of saturation beyond 5%. For dried SH, the dE between 3% 
and 5% is less pronounced compared to VST and fresh SH. However, 
when the concentration increases to 10%, dE reaches the highest 
value among all the films.

FTIR spectra
For chemical composition analysis of the starch-based films, the 

FTIR spectra were recorded (Figure 4).

Figure 4 shows common absorption bands at around 3400-
3200 cm-1 (O- H); 3000-2900 cm-1 (C-H), 1600 cm-1 (C-O bending 
associated with OH group) and 1000 cm-1 (C-O) for SH and VST 
starch-based films. The board peaks at 3400-3200 cm-1 and the peak 

at 1000 cm-1 is also found in the control (starch-film). However, these 
peaks are more intense in the films that incorporated the functional 
extracts. 

UV protection
The UV protection conferred by the starch-based films is 

presented in Table 2. 

All starch-based films incorporating the functional extracts have 
maximum UV protection (50+), classified as “Excellent”, according 
to Australia/New Zealand A(S/NZ) 4399. The incorporation of the 
functional extracts is responsible for conferring UV protection, since 
the control film, only made with water and starch, exhibited an UPF 
of 2.19 (UPF < 15). 

Antioxidant properties
The antioxidant potential of the starch-based films was assessed 

by DPPH method and expressed as a percentage of antioxidant 
activity (Figure 5).

From the analysis of Figure 5, it can be observed that the 
antioxidant activity generally increases with the biomass concentration 
in the extracts incorporated into the films. Statistically significant 
differences (p < 0.05) were only observed in VST films comparing the 
3% and 10% biomass concentrations. When comparing the different 
wastes, significant differences were only observed between VST and 
fresh SH films at the 10% biomass concentration. However, the films 
present lower antioxidant properties, corresponding to the higher 
values of VST films at 10% biomass. 

Water repellence
The characterization of static contact angles of water and 

Figure 3: Variation of b* colour coordinate of the starch-based films developed by the incorporation of vine shoot trimmings (vine), fresh spent hops (hop) and dried 
spent hops (dried hops) extracts at different biomass concentrations (3%, 5% and 10%).

Waste biomass 
concentration Colour difference (dE)

VST 3% Considered as 
reference

VST 5% 11.3 ± 1.8

VST 10% 11.2 ± 1.1

Fresh SH 3% Considered as pattern

Fresh SH 5% 9.1 ± 4.4

Fresh SH 10% 10.3 ± 5.1

Dried SH 3% Considered as pattern

Dried SH 5% 6.2 ± 2.1

Dried SH 10% 16.8 ± 4.0

Table 1: Colour difference analysis of the starch-based films.

Figure 4: FTIR spectra of the starch-based films: the control film and the 
films incorporating SH (fresh and dried) and VST.

Extract UPF Classification

Control < 15 N.A.

VST 3% 50+ Excellent

VST 5% 50+ Excellent

VST 10% 50+ Excellent

Fresh SH 3% 50+ Excellent

Fresh SH 5% 50+ Excellent

Fresh SH 10% 50+ Excellent

Dried SH 3% 50+ Excellent

Dried SH 5% 50+ Excellent

Dried SH 10% 50+ Excellent

Table 2: UV protection of the starch-based films functionalized with the 
incorporation of extracts from VST and SH (fresh and dried) at different 
concentrations.
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diiodomethane for the starch-based films are summarized in Table 3.

Theoretically, hydrophobic/oleophobic surfaces have WCA/DCA 
superior to 90°. Superhydrophobic/oleophobic surfaces exhibit a 
WCA/DCA exceeding 150° [30, 51]. Starch-based films incorporated 
VST (3%, 5%, 10%) extracts presented the highest WCA (~120°), 
indicating excellent water repellence and hydrophobic behaviour. 
Little variation is observed between the different waste biomass 
concentrations. The water repellent properties cannot be attributed 
only to the plasticizing effect of cationized starch and glycerol, as 
films incorporating residue extracts exhibited higher WCA values 
compared to the control. All starch-based films show DCA values 
below 90°, meaning they do not exhibit oil repellence. However, some 
improvements were observed with the incorporation of the functional 
extracts, particularly for VST and SH at 10% when compared to the 
control. 

Discussion
Agro-industrial wastes are known for being rich in colouring 

components and functional ingredients [52, 53, 54]. In this study, 
VSH and SH (dried and fresh) were explored for their functional 
properties to develop 100% bio-based films with interesting properties 
for textile applications. 

All the films exhibited a brown coloration, with noticeable 
variations in shade intensity ranging from lighter to darker colours. As 
the concentration of waste biomass increased, the colour intensity of 
the films also intensified, as visually demonstrated in the last column 
of Table 1 and supported by the dE values presented in the same 
table. This colour difference is attributed to variations in the L* and 
b* coordinates. Despite dE values around 10 when comparing fresh 
SH films at 3% to 5% and 10% biomass, no statistically significant 

differences (p < 0.05) were observed in the L*, a*, and b* colour 
coordinates. In the case of VST and SH, the difference is a significant 
increase in biomass concentration up to 3% and 10%, respectively. In 
contrast, increasing the concentration of fresh SH, significant changes 
in the colour coordinates L*a*b*did not occur. Drying SH led to the 
production of films with a higher colour intensity (see images in Table 
1), with statistically significant differences for L* and b* coordinates 
at 10% biomass concentration (p < 0.05). It is also important to note 
that the standard deviations in the colour coordinates are related to 
the heterogeneity among the replicated films. For that, improvements 
in the drying step are needed. 

FTIR spectra of VST films detected intense bands at around 
1000 cm-1, 1500 cm-1 and 1600 cm-1, typical peaks found at VST and 
attributed to the presence of polyphenolic compounds [55]. Those 
peaks are also found in SH films. A broad and intense peak at 3400-
3200 cm-1 is also common for the control film and VST and SH films 
and is reported to be related to OH and NH groups. Those peaks were 
also found by other authors in VST [55] and SH [56]. The FTIR spectra 
of the control films (not including functional extracts) revealed broad 
peaks at 3400-3200 cm-1 and 1000 cm-1, also reported in the literature 
[57]. The main differences detected due to the drying of SH were the 
higher intensity of the bands at 1600 cm-1 and 1450 cm-1, attributed to 
the C -C group of aliphatic and/or unsaturated aromatic compounds 
and C-H bonds of hydrocarbons [58, 59]. 

Despite the brown colour, the developed films were not opaque 
and even semi-transparent. For that, the Excellent UV protection 
(50+) presented by all the films is not exclusively related to coloration 
properties but may be attributed to the functional compounds 
present in the functional extracts. An early patent from 1976 reported 
the use of hops (Humulus lupulus) as a UV absorber in skincare 
applications [61]. However, Kurzawa et al. (2022) evaluated the sun 
protection factor (SPF) of aqueous extracts from hops and recorded 
a low to moderate UVA/UVB protection, with SPF increasing 
alongside extract concentration [62]. In our study, starch-based films 
containing SH extracts demonstrated a UV protection of 50+, even 
at the lowest SH concentration. Regarding wine industry wastes, 
grape seed extracts have been reported to protect fibroblasts from 
UV-induced damage [63]. For VST, no information is available in the 
literature about the UV protection potential. Our findings are very 
relevant, as the use of SH and VST, as waste materials, allowed the 
development of films with a maximum UV protection.

The antioxidant potential of SH is documented in the literature, 
primarily due to the presence of the phenolic compound xanthohumol 
in its composition [64, 65, 66]. Petrón et al., (2021) quantify an 
antioxidant activity in SH aqueous extracts superior to 70% [67]. 

Figure 5: Antioxidant activity (%) of the starch-based films developed by the incorporation of VST (vine), fresh SH (hop) and dried SH (dried hops) extracts at 
different biomass concentrations (3%, 5% and 10%).

Extract WCA DCA

Control 53.06 ± 4,61 43.630 ± 9.72

VST 3% 120.69 ± 1,99 53.77 ± 4.46

VST 5% 122.99 ± 5,10 58.16 ± 1.96

VST 10% 120.39 ± 1,13 61.75 ± 1.92

SH 3% 67.42 ± 0,97 53.42 ± 3.53

SH 5% 68.09 ± 2,59 51.95 ± 0.70

SH 10% 79.63 ± 4,90 60.70 ± 4.65

Dried SH 3% 71.69 ± 4,34 53.90 ± 4.65

Dried SH 5%

Dried SH 10% 112.25 ± 5.53 49.80 ± 2.21

Table 3: Static contact angle of water (WCA) and diiodomethane (DCA) on the 
starch-based films.
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VSTs are also a known source of antioxidants and in phenolic 
compounds such as flavonoids, stilbenes, and condensed polyphenols 
[55, 60, 68]. However, in our study, the VST and SH films showed 
a low antioxidant activity. Although the drying temperature of the 
films was below 80°C—the threshold commonly associated with 
antioxidant degradation [69, 70]—the low antioxidant activity may be 
attributed to the extended drying duration (approximately 20 hours), 
which could have led to the degradation of bioactive compounds. No 
statistically significant differences (p < 0.05) were observed between 
dried and fresh SH in terms of antioxidant activity.

The incorporation of VST and dried SH extracts at 10% biomass 
allowed the development of hydrophobic starch-based films. 
Hydrophobic textiles represent a significant market due to their 
association with self-cleaning, antimicrobial, and water-repellent 
properties [51].

VST are the main waste generated by the wine industry during 
pruning. Unlike grape pomace, which is considered a by-product and 
valorised in various industrial applications, VST remain unexploited 
considering the large quantity of its production [55, 71]. Moreover, 
the typical disposal of VST by open-air burning or composted in the 
field is associated with negative environmental impacts [72, 73]. SH 
(mixture of beer and hop plant) is generated in significant amounts 
after beer fermentation. Some studies report the valorisation of SH as 
fertilizer, but others mention its disposal, contributing to wastewaters 
contamination [64, 74, 65]. In fact, the companies that supplied the 
VST and SH confirmed having no existing valorisation routes for 
these wastes. Our findings are very relevant not only considering 
the development of functional 100% bio-based films but also for the 
valorisation of VST and SH wastes and as a solution for the negative 
environmental impacts associated with the linear industrial process. 

Conclusions
Starch-based films with colouring and functional properties were 

developed by the incorporation of aqueous extracts of VST and SH 
(dried and fresh). 100% bio-based films with UV protection of 50+ 
and water repellent properties were obtained following a sustainable 
and easily scalable process for industrial applications. These 
functionalities are highly valued across various sectors, including 
sportswear, outdoor apparel, medical textiles, furniture upholstery, 
and footwear. Moreover, the use of water-based extracts and starch 
in the production of the films—without harmful chemicals—is 
significant not only for the manufacturing process but also for the 
films’ end-of-life. If landfilling is considered as the final disposal 
route, the faster biodegradation of these starch-based films, without 
releasing microplastics like those from PVC, polyurethane, or other 
petroleum-derived materials, further highlights the relevance of 
this work. The valorisation of VST and SH, which would otherwise 
be burned or discarded, aligns with bioeconomy principles and 
represents a pathway for improving sustainability for industry. 
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