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Abstract
The elderly fall detection system has seen a rapid rise in medical devices due to the prediction of a 
21.64% rise in the global population of elderly individuals over 65 by 2050. A significant challenge 
in researching elderly fall detection is the limited availability of data. The researcher cannot collect 
a large enough dataset on his own; access to care providers or medical institutions is extremely 
limited, and they typically reject ongoing research projects. However, such problems involving signal 
detection and recognition are a suitable area to use a machine learning approach. This paper address 
and provide a systematic review of contemporary issues in human fall detection systems, focusing on 
sensing technologies and machine learning approaches. The paper starts with a provision of a more 
focused introduction to the problem of falls in elderly populations. This is followed by description of 
sensing technologies, state of the art, and prototype design implementation. The accuracy of 91.8% 
obtained here shows high accuracy which indicate that the model is performing well. The result gave 
Sensitivity (%) = 92.3%. The significance of sensitivity in a fall detection system lies in its capacity to 
explicitly indicate the system's proficiency in accurately detecting falls. A high level of sensitivity in 
a fall detection system enables accurate identification of falls, therefore minimizing the likelihood of 
overlooked falls that can have serious health implications for elderly individuals.

Keywords: Machine Learning, Signal Sensing, Human Fall Dataset, Sensing Technologies, Fall 
Detection

Introduction
By 2050, there will be a predicted 21.64% rise in the global population of elderly individuals over 

65 [1]. With aging came an exponential increase in the effect and risk of falls because of decreased leg 
strength, long-term drug side effects, visual impairments, and other factors that reduced strength. 
Fall rates differ between countries. For instance, according to a Southeast Asian study, Japan has 20% 
of its older population fall per year, compared to 6 to 31% in China. According to research conducted 
in the American region, the annual percentage of senior individuals who fall varies from 21.6% in 
Barbados to 34% in Chile. Still, a lot of old individuals fall at home. According to estimates from 2002, 
28.6% (26-31%) of Italians 65 years of age and older fall within a year. Of these, 43% have several 
falls. Home is where 60% of falls happen [2]. When it comes to older adults living independently in 
their own homes, about half of the falls happen in the home and its immediate surroundings. These 
falls typically happen in areas that are used frequently, like the kitchen, bathroom, living room, and 
bedroom. The remaining falls happen in public places or in other people’s homes [3]. The world has 
become quite concerned with fall detection and prediction in recent years [4]. Physiological reasons 
include age, a history of falls (for example, plantar phobia), mobility issues, sleep difficulties, and 
neurological illnesses are among the many factors that contribute to falls. Environmental factors 
also play a role. Dim light, smooth surfaces, and other environmental conditions are examples [5]. 
Though it doesn't stop falls from happening, fall prediction does necessitate taking into account 
all affecting circumstances. Health care providers are the only ones who should utilize fall risk 
assessment as a reference because fall prediction has a high likelihood of false alarms [6]. As such, 
the primary means of addressing the incidence of fall incidents is fall detection. Fall events and 
activities of daily living are the primary targets of fall detection systems now in use, which share a 
similar structure [7]. Sensing technologies play a crucial role in detecting and recognizing signals 
in healthcare. Over the past decade, a range of sensor technologies became available on the market. 
Unwanted outcomes and detrimental downstream impacts throughout the machine learning 
pipeline have been documented in recent research as a result of data problems [8,9]. Given that 
falls are the primary cause of fatal injuries in the elderly, such as fractures, early detection of falls is 
crucial in preventing loneliness, fractures, loss of consciousness, and other related consequences. 
Therefore, the risk of falls in today's ageing society is a critical concern. Consequently, the number 
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of systems designed to detect falls has significantly increased in recent 
years. Furthermore, medical studies of the harm caused by falls 
have shown that this is greatly influenced by the speed of response 
and rescue. These falls constitute a minimum of 50% of the reasons 
for hospitalisation among the elderly, and around 40% of their 
non-natural causes of death. At a time when the identification and 
prevention of falls are vital for the welfare of older and susceptible 
persons, it is of paramount significance to get a high level of precision 
in detecting such occurrences [10].

Fall detection model performance relies directly on high-quality 
datasets combined with diverse representatives and extensive range 
of data points. The Authors in [8] explained that dataset development 
in machine learning research commonly faces problems with bias 
alongside incomplete data and insufficient transparency which results 
in unreliable models. The Researcher in [9] demonstrates through 
their research that machine learning operations succeed through 
data quality because inadequate datasets weaken fall detection system 
performance. In addition, [7] reviewed multimodal fall detection 
systems because they identify the shortage of standardized real-world 
datasets which hinders the development of generalizable models. 
Large-scale datasets available to the public are essential for algorithm 
training along with evaluation and benchmarking across different 
populations because they are unavailable. In addition, the detection 
of imaginary falls produces artificial alerts that result in increased 
distress for elderly patients together with their caregivers.

The identification of genuine falls from harmless movements 
remains difficult to separate. According to [3], improper alarms occur 
mainly due to uniqueness in each person's body motion combined 
with medical issues such as vision problems. The authors of [4] showed 
how machine learning models used for fall detection experience 
problems in distinguishing between actions that look similar (for 
example when someone sits down quickly or when there are many 
false alarms occur. However, timely response needs to be established 
because it helps reduce the effects of falls. Studies by the Health 
Quality and Safety Commission demonstrate that delayed medical 
care substantially raises mortality and health complications risks for 
senior citizens [1]. The review [5] showed that vision-based along 
with sensor-based detection techniques try to enhance real-time fall 
detection yet complications persist with respect to processing speed 
and messaging delays. The author in [6] support shifting fall detection 
systems from detection to prevention methodologies alongside 
predictive analytic models that identify fall risk factors beforehand. 
Local Binary Pattern (LBP) combined with transfer learning models 
represents [10] solution for improving predictive accuracy of falls 
while enabling proactive responses [10].

This paper performs a systematic review of sensing technologies 
and machine learning application for fall risk detection and identifies 
important areas for future work. The subsequent sections of this 
work are structured as follows: In Section 2, conceptual framework 
is presented. Section 3 present state of the art. Section 4 introduces 
the methodology and implementation of the proposed detection 
algorithm. Section 5 provides an overview of the conclusions drawn 
from the literature review and proposed fall detection algorithm.

Sensing Technologies
This section examined in detail the three primary kinds of fall 

detection sensor technologies-wearable, non-wearable, and hybrid 
along with their benefits and drawbacks.

Wearable Fall Detection Systems: As a result of their portability, 
simplicity of use, and capacity for real-time monitoring, wearable 
devices are among the most widely used fall detection systems. These 
devices are usually worn on the body, like on the wrist, waist, or 
chest, and are fitted with a variety of sensors to identify falls [11]. 
Applications for wearable devices have become incredibly popular in 
many spheres of daily life, including communication, entertainment, 
rehabilitation, education, and health [13] Patel et al., 2012; [14, 15]. 
The wearable and Internet of Things (IoT) patent conflicts of today 
are a direct result of these advancements in wearable technology and 
Internet infrastructure. In both academics and industry, wearable 
fall detection devices are one of the most popular disciplines. This 
is due to the fact that falls are a major and frequent cause of illness 
and death in the elderly [16]. Fall detection devices have the ability 
to produce fall alarms instantly and notify the appropriate parties for 
assistance. Prompt assistance after a fall minimizes treatment costs 
and hospital stays. If a person falls and is left unsupervised for an 
extended period of time, there may be physical and psychological 
complications that arise. Physical complications range from minor 
cuts and bruises to fatal brain damage and hip fractures [17, 11]. 
Psychological complications include fear of falling and other physical 
activities, which increases the risk of falling again. The length of 
time spent on the floor following a fall has a significant impact on 
physiological complications; staying there for an extended period 
of time has deeper effects on subjects, such as social isolation [12]. 
Figure 1 present images and schematic illustration of fall detection 
(Figure 1).

Types of Sensors in Wearable Technology are Triaxial 
Accelerometers, Gyroscopes, Barometers and Electrocardiogram 
(ECG) sensors are:

Triaxial Accelerometers: These sensors calculate the forces of 
acceleration applied to the body. An accelerometer can pick up on the 
abrupt change in acceleration that occurs during a fall. By capturing 
motion in three dimensions (x, y, and z) as indicated in Figure 1, the 
sensor enables the gadget to identify anomalous movements that 
could be signs of a fall [2]. This device has the ability to provide linear 
motion information on an individual’s fall.

Gyroscopes: Gyroscopes measure the angular velocity of the body 
and are frequently used in conjunction with accelerometers. They aid 
in ascertaining the orientation and rotation and offer supplementary 
information to differentiate between typical activities and falls [18]. 

Barometers sensors: These sensors are sensors that can sense 
changes in altitude as well as atmospheric pressure. A barometer 
can pick up on the discernible shift in altitude that occurs during a 
fall due to the swift drop. The Authors in [19] state that a barometer 
and accelerometer are worn as a pendant to measure physiological 
and gait parameters, including walking adaptability, cadence, gait 
variability, gait endurance, visual contrast sensitivity, proprioception, 
quadriceps strength, reaction time, and postural sway.

Electrocardiogram (ECG) sensors: These sophisticated wearable 
gadgets track the electrical activity of the heart. Fall detection and 
subsequent medical assessment might benefit greatly from the 
important data that ECG sensors can provide, as a sudden fall may be 
linked to cardiac problems. Blood volume fluctuations and heart rate 
monitoring are accomplished by ECG sensors [20, 21, 19].

Non-Wearable Fall Detection Systems
This system relies on environmental sensors that are positioned 

http://www.weblogoa.com


Taiwo Samuel Aina WebLog Journal of Robotics and Applications

WebLog Open Access Publications wjra.2025.e05013

throughout the living area as opposed to the user. Without needing 
the user to wear a gadget, these systems are frequently employed in 
homes, hospitals, and care facilities to monitor the surroundings 
and identify falls [24]. Since these systems never shut off, there is 
never a need to remember to put anything on or charge gadgets. This 
eliminates compliance difficulties. Many types of sensing modalities 
have been studied: depth camera [25], depth camera with acoustic 
sensing [26], depth camera with wearable accelerometer [27] radar 
[28] and depth camera with wearable accelerometer [29]. Numerous 
of these studies show excellent outcomes; nonetheless, the majority 
had small testing datasets that were assembled from young, healthy 
volunteer subjects [24]. Numerous sensors are used by non-wearable 
devices to keep an eye on their surroundings, gather information, and 
communicate with the outside world. From industrial automation 
to smart home automation, these sensors can be incorporated into 
a wide range of devices [23]. Some of the commonly found sensors 
in non-wearable devices are the Environmental Sensors, Proximity 
Sensors, Motion sensor, optical sensor, Motion and Position Sensors, 
Acoustic and Vibration Sensors and Position Sensors Environmental 
Sensors are employed in smart homes, industrial monitoring, 
and environmental research, among other uses, to monitor the 
surrounding environment [2]. Optical sensors are used to measure 
and identify electromagnetic radiation, including light. Automation, 
security systems, and imaging applications all make extensive use 
of them [23]. Without coming into direct contact with an object, 
proximity sensors can identify its presence or absence. They are 
utilized in robotics, automation, and security systems [30]. Motion 
and Position Sensors monitor position and movement, sending data 
to applications in the gaming, automation, and security domains [31]. 
Through the use of sound, Acoustic and Vibration sensors identify 
falls. The characteristic sound that usually follows a fall can be heard 
by microphones placed throughout the space [24]. Non-wearable Fall 
Detection Systems offers benefit of continuous monitoring without 
the need for users to wear gadgets, which makes them more convenient 
for elderly or disabled people. Even when the user is not actively 
interacting with the device, they are still able to cover a greater area 
and identify falls [23, 22]. These systems can cause privacy problems, 
particularly when they use cameras or other invasive technology, and 
they might be less successful in detecting falls in places without sensor 

coverage. In addition, compared to wearable devices, installation and 
maintenance may be more difficult and expensive [22].

Hybrid Fall Detection Systems
Wearable and non-wearable technology are combined in hybrid 

systems to capitalize on the advantages of each strategy. Through 
the use of numerous data sources, these systems seek to increase 
fall detection accuracy and dependability [32]. Information from 
wearable and non-wearable sensors is combined in hybrid systems via 
data fusion techniques. In order to identify falls with greater accuracy, 
the combined data is processed using machine learning techniques 
(Singh et al., 2020). The process of a hybrid fall detection system 
usually consists of integrating several sensors, such accelerometers, 
gyroscopes, and cameras, to keep an eye out for falls [32]. Abrupt 
changes in orientation and velocity are detected by the gyroscope and 
accelerometer, which may indicate an impending fall. Concurrently, 
the user's position or movement patterns are analysed by cameras or 
other environmental sensors, such as floor sensors. In order to verify 
whether a fall has occurred, the data from these sensors are cross-
referenced and processed using algorithms (Singh et al., 2020). This 
reduces the possibility of false alarms by leveraging the advantages 
of many sensing modalities. The fall detection system's specificity 
and dependability may be enhanced by the multi-sensor fusion. A 
single sensor system struggles to deliver the required sensitivity 
and specificity because of the complexity of fall kinematics and the 
diversity of fall characteristics. In order to differentiate against the fall 
event, [33] proposed a novel system that combines audio sensors with 
floor vibration. In order to reduce any blind spots and increase the 
sensitivity of low impact fall detection, The Researcher in [34] used 
an infrared camera in conjunction with floor pressure. The benefit 
of Hybrid Fall Detection Systems lies in their capacity to decrease 
false positives and enhance the accuracy of detection, particularly 
in intricate settings [32]. However, when utilizing cameras or other 
invasive sensors, they may be more expensive to install and maintain, 
they demand more power, and they may cause privacy problems.

Machine Learning
Recently, there has been an increase in the desire to use machine 

learning to improve prediction accuracy in the healthcare sector in 

Figure 1: Images and schematic illustrations of the wearable fall detection system [97].
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order to improve patient care standards while boosting productivity 
and lowering costs. The primary goal of machine learning is to 
provide systems the capacity to continuously learn from data and 
perform better without the need for human involvement [35]. Data 
is becoming more and more crucial, especially in machine learning 
applications, which means that creating datasets requires increasingly 
sophisticated processes [36]. An assemblage of data used for model 
evaluation and training is called a dataset in machine learning. It 
usually consists of the matching output data (labels or targets) and 
the input data. The process of creating a dataset requires several teams 
and phases, including collection, labelling, and design. Unwanted 
outcomes and detrimental downstream impacts throughout the 
machine learning pipeline have been documented in recent research 
as a result of data problems [8,9] (Table 1).

Implementation of Prototype Design
Methodology 

The simplified research methodology encompasses a thorough 
literature review on sensing technologies and machine learning, 
aiming to gain a comprehensive understanding of machine learning 
for signal sensing and the current limitations of existing systems. 
The methodology adopted begin with importing necessary libraries, 
loading the datasets, similarity measure and feature selection. The 
hardware requirements consist of a computer with at least 8GB of 
RAM and a modern multi-core processor. This is because some of 
the libraries used sometimes don’t support the old machines due to 
need for GPU and more computational power. Internet Connection 
are put in place for downloading libraries, and dependencies. The 
software requirement consists Operating System (Windows, macOS, 
or Linux), Python 3.7 or higher and Jupyter Notebook: An interactive 
computing environment for writing and running code. Necessary 
Python Libraries are: pandas, matplotlib, seaborn, numpy, scikit-
learn and google. colab (if running on Google Colab). The code for 
this work was run in a Jupyter Notebook environment, and follow a 
series of steps to ensure everything is set up correctly. The proposed 
system utilizes the University of Rzeszow fall detection (URFD) 
dataset. There are 70 videos in total, with 2,373 falling frames, 
7,452 non-falling frames, and 1,719 transitional frames. A single 
person captured RGB and depth data types in this dataset using two 
Kinetic cameras in a laboratory setting. This section presents the 
implementation algorithm and flow chart.

Implementation
The fall algorithm is a crucial component of this review. The 

design and coding for this prototype algorithm is based on the 
architecture (Figure 2).

Reference Sensing 
Technology Contribution

[2] Wearable 
Sensors

The authors developed a deep learning model 
which utilizes LSTM neural networks with 
attention systems for fall detection purposes.

[3] Vision-based
The framework evaluates conditions that 
endanger elderly adults through vision challenges 
leading to falls.

[4] Multimodal
The paper evaluates modern approaches in fall 
detection and prevention technology that philtre 
through machine learning algorithms

[5] Vision-based This document evaluates systems that detect falls 
with image processing techniques.

[6] Multimodal
The paper establishes two main fall-related 
system categories which encompass both 
detection and prevention strategies.

[7] Multimodal
The article examines both performance aspects 
and difficulties and system restrictions regarding 
multimodal fall detection methods.

[8] Data-Centric The paper examines the use of Machine Learning 
datasets during research development.

[9] Data-Centric The research investigates MLOps while putting 
special emphasis on data quality aspects

[10] Vision-based

Fall prediction technology receives performance 
enhancements through the combination of Local 
Binary Patterns (LBP) and transfer learning 
techniques.

[11] Wearable 
Sensors

The research investigates what constitutes the 
most suitable position for wearable devices 
intended for fall detection functions.

[13] Wearable 
Sensors Reviews wearable health-monitoring systems

[14] Wearable 
Sensors

Explores mobile wearable communication 
technologies

[18] Wearable 
Sensors

The research project produced fundamental work 
toward the prototype design of wearable fall alert 
systems.

[19] Wearable 
Sensors

Reviews wearable sensor systems for fall risk 
assessment

[20] Wearable 
Sensors

It designs a detection technology for falls 
combined with heart rate tracking and body 
position recognition capabilities.

[21] Wearable ECG
The paper evaluates wearable ECG devices 
which operate without physical contact for 
monitoring applications.

[22] Wearable 
Sensors

Reviews wearable sensor devices for fall 
detection

[23] Wearable & 
Non-Wearable Reviews gait analysis methods for fall detection

[24] Non-Wearable 
Sensors

Tests non-wearable fall detection methods in 
homes

[25] Depth Sensors
The author introduces depth monitoring 
techniques for fall recognition that analyse body 
shapes.

[26] Acoustic 
Sensors

The solution provides highly efficient methods to 
separate acoustic signals during fall detection

[27] Vision-based
A particle philtre operates as the technology 
foundation for fall detection systems that use 
camera input.

[28] RF Sensors This system makes use of high-resolution time-
frequency distributions when detecting falls.

[29] Depth & 
Accelerometer

The device identifies falls through its integration of 
a 3-axis accelerometer with a depth sensor.

[30] Capacitive 
Sensors

Reviews recent advances in capacitive proximity 
sensors

[31] Motion Sensors
The paper reviews how position sensors as 
well as motion detection devices serve for fall 
detection purposes.

[32] Wearable 
Sensors

The researcher develops a combined approach 
for detecting falls.

[33] Floor Vibrations 
& Sound

The system detects falls through floor vibrations 
and recorded sound waves.

[34] Floor Pressure 
& IR

The researcher has developed a combination 
of floor pressure analysis with infrared image 
technology for fall detection applications.

[35] Big Data
It reviews progressive improvements and 
challenges within ML technology as they pertain 
to fall detection systems.

[36] Data-Centric Explores accountability in ML datasets

Table 1: State of the art: Fall Detection System. [37] Data-Centric Reviews responsible ML dataset practices

[38] Data-Centric The author presents an approach for describing 
datasets used in ML applications.

[42] Healthcare Data Reviews ML applications in healthcare

[54] Wearable 
Sensors

The system utilises wearable sensors to create 
ML-based systems which detect human falls.

[55] Decision Trees
The research depicts the employment of decision 
trees for maintaining responsible AI operation 
principles.

[56] RF Sensors The article enhances the Random Forest 
Algorithm design for classification purposes.

[58] Unsupervised 
Learning Reviews the K-Means clustering algorithm

[59] Data-Driven The researcher utilises KNN to make predictions 
about IT governance project outcomes.
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In the project, the dataset is an image-based dataset hosted on 
Google Drive. The dataset contains images which is categorized into 
two classes: Fall and Non-fall. They represent different scenarios. 

Since the dataset is stored in Google Drive, it's necessary we 
mount Google Drive to the Colab environment. from google.colab 
import drive drive.mount ('/content/drive'). The dataset is located 
in the directory /content/drive/MyDrive/fall-detection/fall_dataset. 
This path is passed to torchvision.datasets.ImageFolder to load the 
dataset. The dataset is loaded using PyTorch’s ImageFolder method, 
which organizes the data according to the directory structure, where 
subfolders represent different classes (e.g., "fall" and "non-fall"): 
dataset = datasets.ImageFolder(root=image_path, transform=data_
transforms).This method automatically labels the images based on 
their directory names (classes). The dataset is split into training and 
validation sets in an 80/20 ratio using random_split():

train_size = int(0.8 * len(dataset)) validation_size = len(dataset) 
- train_size

train_dataset, validation_dataset = random_split(dataset, [train_
size, validation_size])

The image data undergoes several transformations and feature 
extraction processes before being passed into the machine learning 
model: A series of transformations are applied to the dataset to 
preprocess it for training. These transformations are vital to ensure 
that the images are in a format suitable for deep learning models.
Images are resized to a fixed size of (224, 224) pixels to fit the input 
requirement of the model:

transforms.Resize((224, 224)).The pixel values are normalized 
with the standard mean and standard deviation of the ImageNet 
dataset to enhance convergence during training: 

transforms. Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 
0.225]). The image is converted into a tensor, a PyTorch data format 
suitable for deep learning computations.The dataset consists of two 
classes: fall and non-fall. The class labels are automatically assigned 
based on the folder structure. This dataset contains slightly more 
images of falls than non-falls, as observed in the class distribution 
analysis.

] count = Counter(labels)

The project employs EfficientNet-B0, a pre-trained deep learning 
model, fine-tuned for binary classification (fall vs. non-fall).The 
model is pre-trained on ImageNet, which helps it start with learned 
weights from a broader image domain. 

model = models.efficientnet_b0(pretrained=True)

Since the model is pre-trained to classify 1000 classes, the final 
classifier layer is modified to match the number of classes in this 
project (2: fall and non-fall):

num_ftrs = model.classifier[1].in_features

model.classifier[1] = nn.Linear(num_ftrs, len(dataset.classes))

The training and validation datasets are loaded into the model 
using DataLoader for batch processing. Both the training and 
validation data are processed in batches of 32 images:

train_loader = DataLoader(train_dataset, batch_size=32, 
shuffle=True)

validation_loader = DataLoader(validation_dataset, batch_
size=32, shuffle=True)

The model is trained for 5 epochs. In each epoch:The training data 
is passed through the model to compute loss and update weights using 
back propagation. The training and validation accuracy and loss are 
recorded after each epoch, helping to track the model’s performance. 

The training Steps encompasses Forward pass to compute the 
model’s output for a batch of images.

Loss calculation using Cross Entropy Loss:

criterion = nn.CrossEntropyLoss()

pass to compute gradients and update weights using the Adam 
optimizer:

optimizer = optim.Adam(model.parameters(), lr=0.001).

After each epoch, the model is evaluated on the validation set. 

The accuracy and loss are computed to assess how well the model 

Figure 2: Flowchart of prototype system.
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generalizes to unseen data.

In addition to training the model on images, a video-based 
simulation is implemented to detect falls in real-time using a pre-
trained model. The implementation is as follows:

A video is loaded using OpenCV (cv2.VideoCapture) to process 
each frame: cap = cv2.VideoCapture(video_source).

Every second frame is captured and processed by resizing 
and normalizing it, as was done with the images: image_tensor = 
transform(frame).

For each frame, the model predicts whether it shows a fall or non-
fall, and a confidence threshold (e.g., 0.8 or 80%) is applied to the 
predictions: confidence, prediction = torch.max(probabilities, 1).

The percentage of frames classified as “fall” is computed. If 
more than 80% of the processed frames are classified as falls, the 
system triggers a fall detection: if fall_percentage >= 80: print("Fall 
detected!").

A class distribution chart is generated to visualize the distribution 
of fall and non-fall images in the dataset. The class distribution 
chart shows that the dataset has slightly greater fall cases than non-
fall cases (about 260 falls and 210 non-falls). Although the elegance 
distribution is really balanced, the distinction might also nonetheless 
make contributions to a moderate bias inside the version's 
predictions. Techniques like resampling, cost-sensitive studying, or 
data augmentation should help deal with this potential imbalance 
(Figure 3).

Result and Discussion
Confusion matrix

A confusion matrix displays classification performance through 
its depiction of actual labels on the y-axis and predicted labels on 
the x-axis. The confusion matrix contains cells which present the 
number of predicted samples that fall under specific labels. Model 
performance analysis starts with the confusion matrix because it 
reveals vital information regarding which classes have better or worse 
prediction results. The graphical display provides insights into specific 
performance areas of individual classes to help developers improve 
modeling effectiveness (for example through weight modifications 
or increased training examples for specific classes). The matrix 
helps analysts understand both false categorization percentages and 

measures for model quality enhancement. In Figure 4, we plotted 
confusion matrix of proposed system for the subject (Figure 4).

From the implementation, the components of a Confusion 
Matrix are:

True Positives (TP) = 53

True Negatives (TN) = 36

False Positives (FP) = 5

False Negatives (FN) = 3

Figure 3: Class boundary graph.

Figure 4: Confusion matrix.

Figure 5: Training versus accuracy graph.

Figure 6: Loss versus validation loss graph.
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Accuracy
Accuracy (%) = (TP+TN)/(TP+FP+TN+FN)*100  

Accuracy (%) = (53+36)/(53+5+36+3)*100   

 Accuracy (%) = (89/97)*100

Accuracy (%) = 91.8%

Figure 5 depicts Training versus Validation Accuracy graph.

In addition, figure 6 depicts loss versus validation loss graph. 
Training versus validation loss graph shows that the training loss 
decreases regularly, while the validation loss fluctuates, spiking at 
epoch 4 earlier than dropping once more. This indicates that the 
model starts off evolving to overfit around the middle of the schooling 
procedure (epoch three), earlier than enhancing. The model may be 
gaining knowledge of some noise from the training facts, however 
regularization strategies (like dropout) or extra statistics may also 
help improve generalization to lessen the fluctuations in validation 
loss (Figure 6).

Precision
Precision (%) = 100*(TP)/(TP+FP)

Precision (%) = 100*(53)/(53+5)

Precision (%) = 100

Precision (%) = 91.4% 

The sensitivity 
Sensitivity (%) = 100*(36)/(36+3)

Sensitivity (%) = 100*(36/39)

Sensitivity (%) = 92.3%

The overall implementation predicted fall and non-fall image is 
presented in Figure 7. 

Conclusion
The presented fall detection system survey attempts to address 

and provide a systematic review of contemporary issues in human 
fall detection systems, focusing on sensing technologies and machine 
learning approaches. The paper starts with a provision of a more 
focused introduction to the problem of falls in elderly populations. 
This is followed by description of sensing technologies, machine 
learning, Fall detection challenges and suggestions, elderly people 
event accident model performance indicator, state of the art, and 
prototype design implementation. Concerning wearables, Non-

wearables and Hybrid sensing system each technologies have its 
advantages and disadvantages. As a result of their portability, 
simplicity of use, and capacity for real-time monitoring, wearable 
devices are among the most widely used fall detection systems. 
Non-Wearable Fall Detection system relies on environmental 
sensors that are positioned throughout the living area as opposed 
to the user. Wearable and non-wearable technology are combined 
in hybrid systems to capitalize on the advantages of each strategy. 
The benefit of Hybrid Fall Detection Systems lies in their capacity 
to decrease false positives and enhance the accuracy of detection, 
particularly in intricate settings. Based on the description and review 
of relevant machine learning methods, the authors deduced that the 
functionality of fall detection algorithms through machine learning 
depends heavily on three significant elements: sensor choice between 
wearables, cameras and radar, dataset quality standards and data 
balance requirements and the extraction of relevant features and the 
selected processing algorithms. Therefore, the author concluded that 
such outcome of a thorough analysis of machine learning for a few 
chosen studies identified areas for deployment in future prototype 
fall detection model. The accuracy of 91.8% obtained here shows high 
accuracy which indicate that the model is performing well. The result 
gave Sensitivity (%) = 92.3%. The significance of sensitivity in a fall 
detection system lies in its capacity to explicitly indicate the system's 
proficiency in accurately detecting falls. A high level of sensitivity in a 
fall detection system enables accurate identification of falls, therefore 
minimizing the likelihood of overlooked falls that can have serious 
health implications for elderly individuals. 
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