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Abstract
Climate change is the greatest threat to humanity this century. The impact of dairy cows on climate 
change is currently being intensively discussed. There are several ways to reduce methane, carbon 
dioxide and nitrous oxide emissions on dairy farms. The aim of this study was to present some 
aspects of reducing greenhouse gas emissions in dairy farms to mitigate climate change. It has been 
found that methane emissions from dairy farms could be reduced by using feed additives such as 
the addition of oilseeds, various oil blends, seaweed, rapeseed cake, grape pomace, increasing the 
proportion of grains or changing the feed ratio between rough feed and concentrates. Another 
important tool for reducing greenhouse gas emissions is extending the useful life of dairy cows. 
The longer the useful life of dairy cows, the fewer animals must be kept as replacements, the lower 
the feed requirements and the lower the greenhouse gas emissions. Mastitis is a major problem on 
dairy farms worldwide and many cows do not recover after treatment. This means that many cows 
must be culled between the first and third lactation. It is noteworthy that the longevity of dairy 
cows milked with a suitable milking machine such as the “MultiLactor” (Siliconform, Germany) was 
higher. However, the right milking machine for dairy cows is of great importance on the farm as it 
ensures a healthy udder and a longer lifespan of the cow, thus reducing greenhouse gas emissions. 
In addition, technological improvements in herd management and productivity can help reduce 
methane emissions. A notable, computational methods offer the potential to reduce methane 
production in dairy cows. This approach is based on molecular dynamics techniques that can be 
used to develop inhibitors of methane production.

In conclusion, it is important to make dairy farms as climate-friendly as possible to reduce 
greenhouse gas emissions and to take this into account when designing feeding management, 
milking technology, animal husbandry and computational methods.

Keywords: Dairy Cow; Feed Additives; Longevity; Milking Machine; Multilactor; Reduce 
Methane

Introduction
Climate change is one of the greatest challenges of the 21st century. It can lead to environmental 

damage, global food shortages, and poverty [1, 2]. However, the climate system is warming and 
the increase in global average temperature is largely due to the strong contribution of greenhouse 
gas emissions from human activities [3]. According to a recent study, agriculture is a major source 
of methane (CH4) and nitrous oxide (N2O) emissions [4], accounting for approximately 18.4% of 
emissions and contributing significantly to human-caused greenhouse gas emissions [5, 6] (Figure 
1).

However, emissions from livestock farming and manure contribute about 5.8% to total 
greenhouse gas emissions in the agricultural sector [7] and the relationship between global 
temperature and the concentration of greenhouse gases in the atmosphere is well established [3]. By 
2050, the world's population will grow to around ten billion people [8]. Given our planet's limited 
resources, feeding these people will pose an enormous challenge. The question is: Where should 
food be produced and how can global warming be counteracted at the same time? [2]. This question 
was discussed at the world food forum in Mexico in May 2023. Researchers estimate that large-
scale production of artificial meat and the use of insects as a protein source could only cover 20 to 
30 percent of global demand. To compensate for the protein deficiency, intensive meat and milk 
production is necessary. However, the intensive production and accumulation of greenhouse gases 
in the atmosphere contribute to global climate change [9]. There is clear evidence of greenhouse 
gas emissions from the dairy sector and their impact on climate change [10-15]. Astuti et al. 
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[15] also found that dairy farming contributes significantly to the 
accumulation of climate-damaging gases. Therefore, animal protein 
must be produced in a more climate-friendly and sustainable manner 
and used more productively in the food chain.

On the other hand, climate change poses unprecedented 
challenges to the dairy sector. Rising temperatures, weather 
variability, and the increasing frequency of extreme weather events 
are changing traditional agricultural practices and forcing farmers to 
adapt to a new reality [16]. It is noteworthy that the livestock sector 
is responsible for about 30% of global greenhouse gas emissions 
[17]. However, enteric fermentation produces methane (CH4), feed 
production (including processing, transport, and storage) produces 
carbon dioxide (CO2) and nitrous oxide (N2O), and manure 
management produces methane (CH4) and nitrous oxide (N2O), all 
of which contribute significantly to emissions [4, 18, 19]. In addition, 
there are greenhouse gas emissions that arise from the rearing of 
replacement animals [20]. It is also noted that methane from the gut 
is responsible for about 35–55% of total agricultural emissions [21]. 
The following figure (Figure 2) clearly shows the fermentation of 
methane processes and their excretion by the body of cows [22].

Due to this situation, several studies are currently being 
conducted to investigate how to reduce gas emissions, particularly 
enteric methane emissions from ruminants [3, 13, 23]. According 
to these studies, dairy farms can make an important contribution to 
improving the efficiency and sustainability of modern agriculture, 
which in turn could have a positive impact on climate change [24]. 
For long-term milk production, it is necessary to investigate feeding, 
breeding, husbandry, milking techniques, and management strategies 
to reduce methane emissions [25-28]. There are several ways to 
reduce methane, carbon dioxide and nitrous oxide emissions on dairy 
farms. This study addresses some aspects of reducing greenhouse gas 
emissions on dairy farms to mitigate climate change.

The Influence of Some Feed Additives or 
Change in Feed Ration on Reducing methane 
Emissions in Dairy Cows

Feeding is known to contribute to the release of methane gas in 
dairy cows, as it is produced during the digestion of high-fiber food 
[13, 18, 29-31]. This means that the rumen environment can influence 
methanogen production [27, 31, 32]. However, the composition and 
quantity of these fermentation gases are primarily influenced by 
many factors, such as nutrient composition, microbial population 
dynamics and the general health of the animal, all of which affect 
performance and production [31. Various measures and approaches 
have been tested to reduce methane emissions on dairy farms. These 

include the development of anti-methane feed additives (AMFAs), 
which can reduce methane emissions in the gut to varying degrees by 
targeting methanogens, alternative electron acceptors, or the rumen 
environment [33-37]. Previous research on the use of phytonutrients 
and bioactive components as feed additives is of particular importance 
given current regulations on antibiotics and antimicrobials and the 
low methane production during rumen fermentation [38-40].

The following table (1) shows some examples of reduced methane 
emissions in dairy farms after the use of feed additives or the change 
in the feed ratio between rough feed and concentrate.

The table (1) shows that methane production on dairy farms can 
be reduced by using certain supplementary feed or by changing the 
feed ratio between rough feed and concentrate. 

Alabi et al. [43] showed that the combination of essential oil 
blends with fumaric acid reduced methane emissions by up to 
86% and increased propionate concentration by 9.5%, indicating 
significant changes in the composition of the rumen microbiome. 
Various essential oils from natural herbs or extracts of tropical plants, 
especially garlic, lemon, and mangosteen peels, when ingested, 
provide phytochemicals in the form of total polyphenols such as 
condensed tannins (CTs), saponins (SPs), curcumin, quercetin, and 
other anthocyanins, which are thought to reduce methane production 
in the digestive tract of ruminants [47]. Phupaboon et al. [48] found 
that feed supplements containing essential oils of plant origin can 
be used as feed enhancers for ruminants to increase fermentation 
efficiency and as feed additives to suppress methanogen populations 
while reducing methane production. However, dietary fats and oils 
are known to reduce methane production in the intestine [17, 49]. 
and simultaneously modulate the rumen microbiome [50]. In a 
study by Bayat et al. [51], the addition of sunflower oil (50 g/kg dry 
matter) was more effective in reducing intestinal methane production 
in high-feed diets than in low-feed diets (feed to concentrate ratio; 
feed to concentrate ratio 65:35 vs. 35:65). In addition, several 
researchers have investigated the use of rapeseed cake (a by-product 
of the petroleum industry) as a feed ingredient with high residual oil 
content and low enteric methane production without negative effects 
on feed intake [22, 52]. Bayat et al. [53] found that the addition of 
vegetable oils or oilseeds to the diet can increase feed efficiency and 
increase the nutritional value of fatty acids in milk, in addition to 
reducing methane production. Patra [54] found that using the oil 

Figure 1: Methane emission sources in million tons (Mt) (Adapted from the 
International Energy Agency [5].

Figure 2: Fermentation processes, their products, and microbial factors in 
dairy cows. Abbreviations: CO2 = carbon dioxide; H2 = hydrogen; CHO2 = 
methanal; CH3X = methoxy compounds or methylamines; CH4 = methane. 
According to Belanger and Pilling [22] with some modifications.
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as a dietary supplement can also provide significant benefits against 
methane formation. There is evidence that oils and fats can prevent 
methane formation by replacing fermentable organic matter in the 
diet and bio-hydrogenating unsaturated fatty acids. This reduces 
the number of methanogens and protozoa present in the rumen. It 
is generally accepted that the presence of feed additives containing 
essential plant oils has a significant impact on the development of 
methane production [55, 56]. It has been observed that changing feed 
composition contributes to reducing methane emissions from dairy 
farms [30. For example, increasing the grain content in the feed lowers 
rumen pH and increases propionate production. Consequently, 
methane production decreases [13]. However, a high-energy diet 
reduces methane production per unit of milk (energy-corrected 
milk) [57]. This mechanism can be explained physiologically. By 
increasing propionate and decreasing acetate and butyrate in the 
rumen, the hydrogen equivalents that would otherwise be used for 
methanogenesis can be reduced.

It is noteworthy that some feed additives may be effective in 
vitro but not in animals. The use of naringin and chitosan had a 
positive effect on fermentation in vitro. Propionic acid production 
increased, while acetate and methane production decreased by 
12% and 31%, respectively. However, in vivo results showed that 
neither the administration of chitosan and naringin, individually 
or in combination, directly into the rumen had a positive effect on 
rumen fermentation nor on intestinal methane production 58]. In 
addition, studies have examined the effects of seaweed on methane 
emissions. The laboratory study showed that 20 g of Asparagopsis 
taxiformis/kg feed with the mentioned algae almost eliminated CH4 
formation without negatively affecting the digestibility of the feed 46, 
59, 60]. Further studies have shown that when dairy cows were fed 
1% Asparagopsis armata, a 67% reduction in methane was observed 
and no residues were found in the milk. In addition, trials with tied 
cattle showed that the addition of 0.2% organic feed in the form of 
dried Asparagopsis reduced methane emissions by up to 98% and 
increased weight gain by 42% without affecting feed intake or rumen 
function [46]. Stefenoni et al. [61] found that reductions in methane 
production (55-80%) were observed in dairy cows fed 0.5 percent dry 

matter of Asparagopsis taxiformis. Similar results have shown that 
the inclusion of Asparagopsis armata in the diet of dairy cows during 
milk production reduces intestinal methane emissions by more than 
50 percent [62]. However, it must be emphasized that feeding with 
Asparagopsin can cause changes in the rumen mucosa [63]. Recent 
studies have shown that feed containing different amounts and 
mixtures of seaweed reduces methane emissions in dairy cows [64] 
(Table 2).

Zhang et al. [65] found that feed containing condensed tannins 
(CT) reduced methane (CH4) emissions and improved milk 
production. Based on the observations, L. bicolor CT significantly 
reduced CH4 and ammonia nitrogen production while maintaining 
dry matter digestibility in vitro. However, L. bicolor CT can effectively 
improve rumen fermentation and reduce CH4 production.

Interestingly, it has been observed that longer rumination 
times reduce methane emissions and methane content in milk [13]. 
Beauchemin et al. [42] indicate that replacing grass silage with maize 

The procedure and 
application Animal Nr. Supplementary feed Methane reduction Impact on milk 

production Authors

Use of three product-
based strategies

Increasing feeding level, decreasing 
grass maturity, and decreasing dietary 
forage-to-concentrate ratio

decreased CH4 per unit meat or milk by 
on average 12%

Increased animal 
productivity by a median 
of 17%

[17]

Comparison with or 
without concentrate in 
the ration

30 dairy 
cows

Introduction of concentrates into the 
feed ration.

By using concentrated feed in the 
ration, methane production was 
reduced from 7.26 to 6.42% of gross 
energy intake.

With concentrate in the 
ration, milk yield (FPCM) 
increased from 24.9 to 
33.7 kg/day

[25]

Change in the roughage-
concentrate ratio.

16 Holstein 
dairy cows More forage in the ration

Increasing the R:C ratio from 47:53 to 
68:32 increased CH4 emission from 
538 to 648 g/cow per day

Milk yield is not changed [41] 

Addition of three oilseeds 
to the feed ration

16 dairy 
cows

Addition of sunflower seeds, flaxseeds, 
and Canola seeds Decreased methane production 13% Milk yield not affected by 

oilseed treatments [42]

Addition of essential oil 
mixture and fumaric acid 
to the mixed ration

Black Angus 
beef cows Different oil blends were used

Reduction of gas volume from 181 to 
144 ml/g dry mass and reduction of 
methane content from 7.69 to 4.01 
mg/g dry mass

Not specified [43]

Inhibiting methane 
formation with seaweed Dairy Cows

The use of the algae Asparagopsis 
taxiformis or Asparagopsis armata in 
feed

Methanogenesis was inhibited by up 
to 98%. Not specified [44]

Addition of rapeseed 
cake to the feed ration 8 Red cows Addition of 19.2% rapeseed cake to the 

dry matter
Reduced methane production from 14.6 
g/kg milk to 12.3 g/kg milk.

Increase in milk yield from 
37.5 to 41.5 kg/day. [45]

Addition of seaweed to 
the feed ration

Brahman-
Angus cross 
steers

Addition of 0.20% of the organic matter 
intake of Asparagopsis/Taxiformis to 
the grain-rich ration.

Reduction of methane emissions from 
12.5 g/kg to 1.0 g/kg dry matter intake. Not specified [46]

Table 1: The use of supplementary feed or changing the feed ratio between rough feed and concentrate to reduce methane emissions on dairy farms.

CH4: Methane, FPCM: Fat-Protein corrected milk, R:C: rough: concentrate

Parameters
Treatment groups2

SEM
Control AN:FV:AT AN:FV FV:AN

Number of cows 10 10 10 10

DMI1 22.6 22.9 24.3 23.7 0.684

Milk yield kg/d 31.5 33.0 31.4 33.1 1.40

ECM Kg/d 35.9 37.4 34.4 35.3 1.76

CH4 g/kg 459a 417b 452ab 435ab 17.0

CH4 g/Kg DMI 20.91a 18.42b 18.72ab 18.57b 1.065

CH4 g/Kg ECM 13.36ab 11.44b 14.21a 13.20ab 1.09

Table 2: Dry matter feed intake (kg/day), milk yield, and methane emissions 
of Holstein dairy cows fed diets containing different amounts and mixtures of 
seaweed according to Reynolds et al. [64] with some modifications.

1 DMI: Dry matter feed intake, 2 Treatment diets: Control, no seaweed; AN: 
FV:AT = Ascophyllum nodosum (AN), Fucus vesiculosus (FV), and Asparagopsis 
taxiformis (AT) at 5:45:50 and 1.5 g/kg diet DM; AN: FV at 90:10 and 6.5 g/kg diet 
DM; FV:AN at 90:10 and 17.5 g/kg diet DM.
a, b Treatment means with different superscripts tend to be different at P < 0.08 
based on paired t-tests; SEM:  Standard error; ECM: Energy Corrected Milk; 
CH4: Methane.
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silage promotes the fermentation of propionate instead of acetate 
in the rumen and thus reduces methane production in dairy cows. 
When maize silage completely replaced grass silage in the diet of 
dairy cows, a reduction in methane emissions of 8 to 11 percent 
was observed [66]. However, due to its high biomass production 
and high content of fermentable carbohydrates, maize is one of the 
most important high-yield feeds in ruminant feeding [67, 68]. In this 
context, it is important to select good maize varieties that improve 
feed digestibility and reduce intestinal methane emissions, in line 
with global efforts to combat climate change [69]. A study by Parnian-
Khajehdizaj and Moharramnejad [2] found that a specific maize 
variety (TWC647) improved fermentation efficiency and reduced 
environmental pollution in the laboratory. The results of Akter et 
al. [70] showed interesting results that the addition of grape pomace 
reduced methane emissions and improved milk quality in dairy cows 
(Figure 3).

However, grape pomace has been reported to reduce methane 
emissions from cattle in vitro [71, 72] and in vivo [73, 74]. The above 
results are due to the fact that the lipid and tannin content of grape 
pomace has anti-methanogenic [75] and immunomodulatory effects 
[76]. This means that tannins in grape pomace can negatively affect 
neutral detergent fiber (NDF) digestion and rumen degradation by 
altering microbial proteins in the rumen, thus reducing microbial 
activity and methane production [77]. Therefore, the addition of 
grape pomace to dairy cow feed can make an excellent contribution 
to achieving the goal of methane reduction [70].

Considering the above findings, to meet future feed additive 
needs, the livestock industry needs to develop natural feed additives 
that improve nutrient efficiency, provide alternatives to antibiotics, 
and reduce methane emissions from ruminants. 

The Impact of Milking Technology on 
Reducing Methane Emissions in Dairy Cows

At f﻿irst glance, milking machines seem to have nothing to do 
with climate protection. However, milking is an essential part of 
dairy farming to improve milk production and quality. If the milking 
machine settings and the design of the teat liner are suitable for all 
dairy cows on the farm [78], the udder condition remains healthy 
and the cows stay on the farm for a long time, as sick cows with 
severe mastitis are replaced from the farm. The longer cows are kept 
on the farm, the fewer cows need to be kept for reproduction, the 
less feed is needed and the lower the greenhouse gas emissions [25, 

79-81]. The research results showed that improved animal health 
not only led to higher milk productivity but also to a significant 
reduction in greenhouse gas emission [24]. However, health 
welfare and longevity have a significant impact on the amount of 
greenhouse gas emissions per kg of milk produced [82-84]. In this 
context, increasing individual cow production is often cited to reduce 
methane emissions by reducing maintenance requirements [85]. 
This means that lower greenhouse gas emissions are associated with 
a longer longevity of dairy cows on the farm [25, 86]. Von Soosten 
et al. [84 reported in a model that cows with five to eight lactations 
reduced their emissions per kilogram of milk by approximately 40% 
compared to cows slaughtered after their first lactation. Similarly, 
Vellingo and de Vries [82] showed that extending the lifespan of 
cows from two to six years reduced greenhouse gas emissions per 
kilogram of fat-protein-modified (FPCM) milk by 14-19%. However, 
good health can increase the longevity of cows, which has a positive 
impact on the environment [87] To increase life longevity, it is 
important to understand the biological causes of increased parity 
[88]. In general, a longer lifespan of dairy cows can lead to lower 
greenhouse gas emissions per unit of product because cows produce 
more milk over their lifetime, require fewer cow replacements [80], 
and cause fewer emissions by raising younger cows [89, 90]. Thus, 
increased milk production and the absence of health problems such 
as metabolic disorders, lameness or mastitis reduce the risk of culling 
and greenhouse gas emissions [91]. However, efforts to increase the 
longevity of dairy cows have so far failed because increased number 
of lactation and milk production increase the risk of health problems, 
culling of cows or death of animals on farms [86, 88, 92]. In practice, 
it has been shown that higher milk yield per cow leads to a shorter 
productive lifespan and, at the same time, an increased replacement 
rate [25]. Therefore, dairy cows’ longevity has decreased in most high 
milk-producing countries over time [86, 92]. This means that dairy 
cows have no real physiological performance potential, as the average 
slaughter age is significantly below their maximum milk production 
in the 4th or 5th lactations [24, 91, 93]. It is important to know that 
increased life expectancy is an indicator of the welfare of animals on 
the farm [94]. Beaudeau et al. [95] found that udder diseases have 
the greatest direct influence on the risk of culling. Several lines of 
evidence indicate that the culling rate due to clinical and subclinical 
mastitis ranges between 20 and 40% of the dairy cow population [93, 
96]. The authors assume an average loss of two to three Liters of milk 
per cow per day due to production diseases. These mastitis problems 
also occur in industrialized countries [93. Studies by Betschold et al. 
[97] showed that mastitis pathogens were detected in 19% of milk 
quarter samples in southern Germany (Bavaria) between 2023 and 
2024.  

The main reason for the short longevity of most cows is that 
farmers do not use the right milking machines to keep their cows 
healthy. One of the most promising solutions to address these 
challenges is the introduction of appropriate milking technologies to 
maintain udder health [98]. In view of the research results of various 
studies showing that the premium milking machine “MutiLactor” 
(Siliconform, Germany) contributes to the fight against climate 
change [78, 99, 100]. With this milking system, cows can enter the 
parlour voluntarily and ruminate during milking. They behave calmly 
and contentedly. This demonstrates that the milking machine is very 
well suited for lactating cows (Figure 4).

An interesting comparison of the milk parameter results of seven 
Bavarian dairy farms using a suitable milking machine (MultiLactor) 

Figure 3: Methane production (CH4) of multiparous Holstein dairy cows (n 
= 24, 205 ± 39 day in milk) with different grape pomace treatments. CON 
= Feed with a total mixed ration without grape pomace; 10% GP = Add 
10% grape pomace on a dry matter basis; and 15% GP = Add 15% grape 
pomace on a dry matter basis. The letter differences a and b were significant 
(P<0.05). Error bars represent ±SEM [70]. 
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with the average milk parameters of all Bavarian dairy farms showed 
that the seven dairy farms not only increased their milk production 
but also improved milk quality and extended the longevity of the 
dairy animals [100, 101] (Table 3).

However, it should be noted that milking is not only about the 
well-being and health of the cows, but also about the functional 
reliability and efficiency of the milking machine [102]. This reduces 
stress and improves overall animal health. Consequently, healthier 
cows are more productive and produce more milk, which is crucial 
in times of extreme environmental stress. Therefore, extending the 
productive lifespan of dairy cows is an effective way to reduce climate 
impacts and improve the profitability of milk production [25]. This 
means that milking technologies can play an important role in 
mitigating the impacts of climate change by improving the efficiency 
of milk production, reducing emissions, and improving resource use. 
Finally, appropriate milking systems can increase the efficiency of 
the milking process and contribute to improving animal health and 
welfare, thereby reducing greenhouse gas emissions on dairy farms.    

The Impact of Dairy Husbandry and 
Management in Dairy Farms on Reducing 
Methane Emissions 

There are many opportunities in this sector to contribute to climate 
protection by reducing emissions. A reduction in disease and parasite 
prevalence on dairy farms would in principle lead to a reduction in 
emission intensity, as healthier animals are more productive and thus 
cause fewer emissions per unit of production [1, 24]. However, good 
management is particularly important during the transition period of 
lactation, as metabolic disorders during this phase pose a significant 
risk for productivity and economic losses, as well as an increase in 
greenhouse gas emissions [24]. This means that poor health and 
welfare of dairy cows on farms are associated with behavioural and 
metabolic changes that can lead to increased greenhouse gas emissions 
12]. It is important to note that the emission intensity of milk 
production is lowest in developed countries (between 1.3 and 1.4 kg 
CO₂ equivalent per kg of fat- and protein-corrected milk). In contrast, 

higher emission intensities are observed in developing countries such 
as South Asia, sub-Saharan Africa, West Asia, and North Africa 
(between 4.1 and 6.7 kg CO₂ equivalent per kg of fat- and protein-
corrected milk) [1]. In addition, there are numerous opportunities 
to reduce greenhouse gas emissions from the dairy industry. For 
example, measures to promote the construction of biogas plants 
on dairy farms to process manure and prevent its discharge into 
waterways are crucial for reducing methane emissions [103]. This 
means that by using technologies such as anaerobic digestion, which 
converts manure into biogas, methane emissions can be reduced and 
renewable energy can be generated. Interestingly, reports from China 
indicate an increased focus on technological innovations in animal 
feed, which have significant implications for reducing belching and 
bloating in cows, the two largest sources of methane emissions on 
dairy farms [103]. In addition, the use of precise feeding techniques 
that ensure that cows receive right nutrients without overfeeding can 
reduce methane and nitrous emissions from manure. This means 
that improvements in herd management and productivity enabled 
by technologies such as milking technology can help reduce methane 
emissions per unit of milk produced.

Impact of Breeding on Reducing Greenhouse 
Gas Emissions

Numerous reports have shown that methane emissions from 
cattle and sheep can be significantly reduced through breeding 
programs. However, measurements on a total of 14,000 Dutch cows 
and the analysis of DNA profiles showed that methane emissions 
vary by up to 25 percent depending on genetic factors. To achieve this 
goal, breeding cows and bulls with the lowest methane emissions are 
selected, considering other relevant traits such as fertility, health, and 
longevity. Consequently, genetic selection of cows with low methane 
(CH4) emissions could be an effective and sustainable strategy 
to reduce greenhouse gas emissions from dairy cows [104, 105]. 
However, several studies have shown that the heritability of methane 
traits in dairy cows is low to moderate, ranging from 0.11 to 0.33 [106, 
107]. Manzanilla-Pish et al. [108] reported that animals with lower 
methane production process feed more efficiently.

How Can Dairy Cows Maintain Their Milk 
Production While Reducing Greenhouse Gas 
Emissions in the Face of Climate Change?

Increased global temperatures are affecting the health and 
productivity of livestock. Cows are particularly sensitive to heat 
stress, which can lead to reduced milk production, lower fertility 
rates and increased susceptibility to disease. Farmers must find ways 
to mitigate these impacts to maintain productivity [109]. However, 
climate change is exacerbating water scarcity and poses a challenge 
to the production of fodder crops and the health of livestock, 
particularly in developing countries [109]. Nevertheless, heat stress 
affects the longevity of dairy cows and the profitability of the farm. 
Physiological, when high temperatures and humidity overwhelm a 
cow's natural cooling mechanisms, resulting in reduced productivity, 
fertility, and overall health [110-112]. Due to long summers and 
high temperatures, heat stress in cows is difficult to manage in many 
countries. Therefore, maintaining dairy farm profitability and herd 
welfare is crucial under such conditions. As a result, dairy cows suffer 
from the following problems [93, 110-114]:

•	 Reduced milk production: Cows suffering from heat stress 
eat less and experience physiological and hormonal changes, leading 

Figure 4: MultiLactor milking machine during milking in a tandem milking 
parlour according to Kaskous [100].

Parameter Milk yield 
kg/year

Fat 
%

Protein 
%

SCC 1000
Cells/ml

Lactation 
number

Bavaria Dairy cows* 8797 4.17 3.53 208 3.1

7 Dairy farms** 9296 4.28 3.57 123 3.7

Table 3: Milk parameter results from seven dairy farms with the average milk 
parameters for the whole of Bavaria.

* Milk parameters of dairy cows in the state of Bavaria, Germany, according 
to LKV Bayern in 2024. ** Dairy farms use the MultiLactor milking system 
(Siliconform, Germany).

http://www.weblogoa.com


Shehadeh Kaskous WebLog Journal of Veterinary Science and Animal Husbandry

WebLog Open Access Publications wjvsah.2025.j01036

to lower milk production. Every liter of milk lost means a loss of 
income.

•	 Reproductive problems: Heat stress disrupts hormonal 
balance and makes it difficult for cows to conceive and give birth. 
This leads to longer calving intervals and a smaller number of calves 
over their lifetime.

•	 Health and longevity: Chronic heat stress leads to claw 
problems, a weakened immune system, and diseases such as mastitis, 
often resulting in premature slaughter. Each premature slaughter 
increases the cost of replacing a cow that has not yet reached its peak 
productivity.

•	 Costs of herd turnover: Raising or purchasing replacement 
calves is expensive, and high herd turnover reduces the efficiency of 
investments such as housing and milking equipment.

•	 Herd longevity: Healthier cows stay in the herd longer, 
spreading costs and increasing profits, as well as reducing methane 
emissions.

Interestingly, direct measurement of CH4 production in heat-
stressed dairy cows usually shows lower values, as feed intake often 
decreases under heat stress [115]. However, prolonged exposure to 
a hot environment is expected to increase methane concentrations 
in dairy cows, highlighting the need to mitigate heat stress and its 
environmental impacts [115, 116].

Computer-aided Methods for Reducing 
Methane Emission 

Of particular note is the potential use of computational methods to 
reduce methane production in ruminants. This approach is based on 
molecular dynamics techniques that can be used to develop inhibitors 
of methane production [3]. The increased use of computational 
research techniques, including artificial intelligence, is encouraged to 
reduce methane production in livestock farming more efficiently and 
cost-effectively. Methanogens have been observed to possess unique 
physiological properties, including metabolic pathways that differ 
from those of other rumen microorganisms. Therefore, inhibition 

of rumen methane production should not cause disturbances to 
other rumen microorganisms such as bacteria, fungi and protozoa 
involved in proper digestion. However, inhibition of rumen methane 
emissions can lead to changes in hydrogen partial pressure and 
fermentation parameters in the rumen, which can indirectly affect the 
composition of the rumen microbiome [117]. Interestingly, several 
methanogen-specific enzymes were identified that are responsible for 
the formation of inhibitors [118]. Figure (5) shows the structure of 
some enzymes that inhibit the process of methane formation. 

In addition, this research project investigates identified 
methanogenic enzymes as potential targets for the development of 
inhibitors.

Conclusion
- Inclusion of additives in the diet of dairy cows to inhibit methane 

formation can be economically viable, as it can increase the cow's 
productivity through improved nutrition while reducing greenhouse 
gas emissions.

- By optimizing milking technology, greenhouse gas emissions 
on dairy farms can be reduced because dairy cows stay healthier and 
their life expectancy on the farm increases.

- Optimal animal husbandry and good management are crucial 
for udder health and increased milk yield. This increases the lifetime 
productivity of dairy cows and thus reduces greenhouse gas emissions.
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